
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

A hardware scalable, software configurable LQG controller using a A hardware scalable, software configurable LQG controller using a

sequential discrete Kalman filter sequential discrete Kalman filter

Matthew James Cauwels
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Cauwels, Matthew James, "A hardware scalable, software configurable LQG controller using a sequential
discrete Kalman filter" (2019). Graduate Theses and Dissertations. 17655.
https://lib.dr.iastate.edu/etd/17655

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17655&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F17655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17655?utm_source=lib.dr.iastate.edu%2Fetd%2F17655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A hardware scalable, software configurable LQG controller

using a sequential discrete Kalman filter

by

Matthew James Cauwels

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering (Computer Networking)

Program of Study Committee:
Phillip H. Jones, Co-major Professor

Kristin Yvonne Rozier, Co-major Professor
Peng Wei

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Matthew James Cauwels, 2019. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vii

CHAPTER 1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Thesis Outline . 3

CHAPTER 2. RELATED WORK . 5
2.1 LQG Relevance and Industrial FPGA Controllers . 5

2.1.1 Relevance of Kalman Filters and LQG Controllers 5
2.1.2 Embedding Control Algorithms in FPGAs . 6

2.2 Hardware Accelerated Architectures . 7
2.2.1 Matrix Inversion . 7
2.2.2 Kalman Filters . 8
2.2.3 LQG Controllers . 10

2.3 HW/SW Codesigns . 11
2.4 High-Level Synthesis Tools . 12

2.4.1 High-Level Synthesis Overview . 13
2.4.2 Xilinx’s Vivado HLS . 14
2.4.3 Mathlab’s HDL Coder . 14
2.4.4 LabView’s FPGA Tool Suite . 15

CHAPTER 3. LQG ALGORITHM . 17
3.1 State-Space Modeling . 17
3.2 Linear Quadratic Regulator (LQR) . 19
3.3 Kalman Filter Algorithms . 20

3.3.1 Kalman Filter Model . 20
3.3.2 Prediction Stage . 22
3.3.3 Estimation Stage . 22

www.manaraa.com

iii

CHAPTER 4. ARCHITECTURE . 24
4.1 Algorithm’s Scheduling . 24

4.1.1 SDKF’s Prediction Stage . 24
4.1.2 SDKF’s Estimation Stage . 25
4.1.3 LQR’s Computation . 26

4.2 Hardware Components . 27
4.2.1 Multiply Accumulate Tree . 27
4.2.2 Scalar-Adder & Inverter . 30
4.2.3 Memory Management Architecture . 31
4.2.4 Finite State Machine . 35
4.2.5 Output Shift Register . 36

4.3 Software Interface . 37
4.3.1 Software Configurable Registers . 37
4.3.2 BRAM Initialization . 38
4.3.3 Sensor Input Interface . 38
4.3.4 Controller Output Interface . 38

CHAPTER 5. ANALYSIS . 41
5.1 Targeted Hardware Platforms . 41

5.1.1 Resource Utilization . 41
5.1.2 Control-loop Timing . 45

5.2 Software Comparison . 46
5.2.1 Targeted Software Platforms . 46
5.2.2 Timing Comparison . 47

5.3 Related Work Comparison . 48
5.3.1 Methodology Analysis . 48
5.3.2 Application Analysis . 49
5.3.3 Scaling Analysis . 50
5.3.4 HW/SW Codesign Analysis . 51

CHAPTER 6. RESULTS AND DISCUSSION . 52
6.1 Performance Summary . 52

6.1.1 Resource Summary . 52
6.1.2 Timing Summary . 52

6.2 Methodology Discussion . 53
6.3 Future Work . 53
6.4 Conclusion . 54

APPENDIX . SOFTWARE CONFIGURABLE REGISTER COMPUTATIONS 61

www.manaraa.com

iv

LIST OF TABLES

Page
Table 4.1 LQG’s Prediction Equations Scheduling Details 25
Table 4.2 LQG’s Estimation Equations Scheduling Details 26
Table 4.3 LQG’s LQR Equations Scheduling Details 26
Table 4.4 Variables Stored Across the BRAMs . 32
Table 4.5 BRAM Management Mechanism . 34
Table 4.6 LQG Equation Scheduling Details . 35
Table 5.1 Hardware LQG Resource Utilization (Zynq - 7020) 42
Table 5.2 Hardware LQG Resource Utilization (ZYNQ UltraScale+ ZCU106) 42
Table 5.3 Hardware Iteration Time - Formulas . 45
Table 5.4 Hardware Iteration Time - 100MHz . 46
Table 5.5 Software LQG w/ SDKF Iteration Time on ARM Cortex-A9 Processor . . . 47
Table 5.6 Software LQG w/ SDKF Iteration Time on AMD & Intel Processors 47
Table 5.7 Hardware Resource Utilization and Timing - Methodology Analysis 49
Table 5.8 Hardware Resource Utilization and Timing - Application Analysis 49
Table 5.9 Hardware Resource Utilization and Timing - Scaling Analysis 50
Table 5.10 Hardware Resource Utilization and Timing - HW/SW Codesign Analysis . . 51

www.manaraa.com

v

LIST OF FIGURES

Page
Figure 3.1 A pictorial representation of (3.1), with respect to a closed-loop system. . . 18
Figure 3.2 A pictorial representation of (3.9) with respect to a closed-loop system. . . 21
Figure 3.3 A pictorial representation of (3.12), showing how the prediction stage of

the Kalman filter is performed using the previous state-estimate & input,
modeled dynamics of the system, and the system’s error covariance matrix
Qk. 23

Figure 4.1 A top-level schematic of the LQG controller’s hardware architecture, show-
ing how the Finite State Machine (FSM) coordinates the configuration and
scheduling of the BRAMs, Multiply-Accumulate Tree, and Scalar-Adder/-
Inverter. 27

Figure 4.2 The schematic for the modified multiply-accumulate tree, showing its scala-
bility, as defined by the parameter Depth. The structure’s three modes of
operation are broken down below the main diagram, with a red dashed line
showing which path is operational in each mode. Additionally, the Reduc-
tion Circuit (RC) is shown, which will help accumulate Mode 1 operations
when the number of matrix elements (n) is greater than the number of inputs
(i). 28

Figure 4.3 The schematic for the additional-scalar adder and scalar-inverter hardware.
Notice that BRAM SA is independent from the memory associated with
the multiply-accumulate tree. This allows for sensor values to be written
without having to design additional circuitry to prevent memory write-back
conflicts. 30

Figure 4.4 The schematic for the memory management architecture, showing how the
multiplexers coordinate which input is fed into each BRAM and how the
multiplexers modify the outputs of the BRAM before being fed into the
multiply-accumulate tree. 31

Figure 4.5 The schematic (a) and state-machine flow chart(b) of the output shift reg-
ister hardware incorporated for each adder used to perform matrix addition
(i.e., each adder within the multiply-accumulate tree and the first reduction
circuit). 36

Figure 4.6 An example of how the user would encode a parameter matrix in software so
that it can be initialized into the FPGA’s BRAMs via the setBRAM function. 38

Figure 4.7 A screen-shot of transmit sensor data: the C function which facilitates
the transition of sensor information from software to hardware’s BRAM SA.
Given the matrix t structure of sensorData, the software iterates through
each element in sensorData, writing it to a software configurable register,
setting its write address in BRAM SA, and sending a write command to
BRAM SA. 39

www.manaraa.com

vi

Figure 4.8 A screen-shot of transmit sensor data: the C function which reads the
LQG controller’s output uk from each output shift registers (see Section
4.2.5). 40

Figure 5.1 The resource utilization, as a percentage of total on-chip resources, for vary-
ing scales of the HW/SW LQG’s hardware architecture for a Xilinx ZYNQ
7020. Note that the Depth of the multiply accumulate tree was chosen so
that the system was fully pipelined, i.e., the largest amount of hardware for
the given matrix dimension. 43

Figure 5.2 The resource utilization, as a percentage of total on-chip resources, for vary-
ing scales of the HW/SW LQG’s hardware architecture for a Xilinx ZYNQ
UltraScale+ XCZU7EV MPSoC. Note that the Depth of the multiply ac-
cumulate tree was chosen so that the system was fully pipelined, i.e., the
largest amount of hardware for the given matrix dimension. 44

www.manaraa.com

vii

ABSTRACT

This thesis details the motivation, architecture, and analysis of a hardware scalable, software

programmable Linear Quadratic Gaussian (LQG) controller using a Sequential Discrete Kalman

Filter (SDKF) state estimator. While LQG controllers have been around since the 1980s, these con-

trollers have currently not been widely adopted in industry since this algorithm involves a non-trivial

matrix inversion. While many accelerated LQG & DKF architectures have been published, these

architectures target specific platforms or applications; switching these architecture’s application is

a non-trivial and time consuming task. Thus, I designed an open-source hardware scalable, soft-

ware configurable LQG controller, with the intent of others to use this design as an IP core, which

will help ease the transition from abstract control theory to practical implementation. The design

allows for a user to scale the accelerated LQG hardware architecture while software configurable

registers allow the user to configure their controllers without re-synthesizing the hardware design,

thus allowing for them to tune their controller on-the-fly. This controller was designed in Xilinx’s

Vivado 2018.2 design suite, targeting Xilinx ZYNQ series FPGAs, which contain an embedded

dual-core ARM Cortex-A9 processor in addition to the traditional FPGA fabric. To compare the

performance of this accelerated design, a software implementation of the algorithm was built and

tested on three different processor platforms: an embedded ARM Cortex-A9 processor, an AMD

FX-9800 series processor, and an Intel i7-4810MQ series processor. For lower dimensional matrices

(n = 4), there were modest performance improvements, ranging from 0.79-14.5x improvement for

the AMD & ARM processor, respectively. For larger dimensional matrices (n = 128), the HW/SW

LQG achieved a 73x, 102x, and 1390x performance improvement over the Intel, AMD, and ARM

processors, respectively. In addition to the software comparison, the analysis is concluded with a

comparison of the proposed architecture’s size and performance characteristics versus several of the

most relevant and recent comparable architectures.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This chapter introduces the motivation for this work: to bridge the gap between multiple

domains, specifically control theory and embedded systems. State-of-the-art control algorithms

are computationally expensive and pure software implementations are no longer feasible for large

scale systems. Thus, there is a drive to incorporate advanced control algorithms into hardware

accelerated platforms, such as FPGAs or GPUs (Ding et al., 2019). This work seeks to advance

this goal by designing a generalized & accelerated hardware scalable, software configurable LQG

controller IP core for FPGA implementation.

1.1 Motivation

With the increases in technology, specifically in the computational power of embedded platforms,

solutions involving Cyber Physical Systems (CPS) are becoming more common among many re-

search domains (Lee et al., 2011). CPS can lead to innovative and effective solutions; however,

this is shifting the way research is performed: collaborations of multi-disciplined researchers are

becoming commonplace (Lee et al., 2011). This is due to needing intricate knowledge of both the

physical system and the targeted computational platform. One such device often used for embed-

ded systems is a Field Programmable Gate Array (FPGA). By programming the device to create

custom hardware, FPGAs are frequently used for prototyping and implementing computationally

intense algorithms, such as those used in state-of-the-art control theory.

The major disadvantage to FPGAs is that developing a custom design is time consuming and

error prone. Thus, several companies have developed tools to help expand the use of FPGAs. High-

level synthesis (HLS) seeks to abstract away the low-level Hardware Description Language (HDL)

syntax and hardware programming style with a higher-level of abstraction. This is commonly done

through either utilizing well-known, standardized software languages or graphical user interfaces

www.manaraa.com

2

(GUIs). Xilinx, Matlab, and National Instruments (NI) have developed tools that utilize HLS

to auto-generate HDL from functionally equivalent C/C++ code, their own functions, or block-

diagram models. While these tools do expand the accessibility of FPGAs, as well as decrease

their design-time cost, many of these tools return sub-optimal designs in comparison to manually

generated HDL designs, since many of the intricacies of the hardware are hidden from the user or

through a misunderstanding of the tool’s hardware optimization features (Lahti et al., 2019).

Much like these high-level tools, the goal of this work is to help bridge the gap among research

teams from multiple domains, specifically those in control theory and those in embedded systems.

Presented in this thesis is a hardware scalable, software configurable Linear Quadratic Gaussian

(LQG) controller, which is the combination of an optimal Linear Quadratic Regulator (LQR)

control-law and a Sequential Discrete Kalman Filter (SDKF). This architecture is designed so

that the hardware can scale to fit within any platform’s constraints. Additionally, it is on-the-

fly software configurable (which allows for tuning of the control algorithm without rebuilding the

hardware design) and is designed with minimal assumptions so that it can accommodate a large

variety of real-world systems.

In this way, this design is intended to act as an Intellectual Property (IP) core, which can be

customized in hardware by an embedded systems engineer and configured in software by a controls

engineer. By partitioning the workload, the design of a LQG controller can be separated into

tasks suitable to each engineer’s specialty. Additionally, like Matlab, NI’s LabVIEW, and HLS,

this IP core helps decrease the amount of time spent from design to implementation; however, the

hardware generated by this design is transparent to the user and the controller’s properties can

be configured on-the-fly via software, rather than having to re-synthesize and re-implement a new

hardware design.

Note that this architecture was designed with only one assumption about the targeted system:

the sensor measurements must be independent from one another. This is due to implementing

the SDKF algorithm rather than the standard Kalman Filter algorithm. The SDKF algorithm

was chosen due to its ability easily scale, which is achieved by exchanging a generalized n × n

www.manaraa.com

3

matrix inversion for an iterative loop of scalar inversions. Thus, if this assumption is valid for

the targeted system, then this architecture will perform the LQG algorithm successfully. However,

since this design is intended to be generalized for most systems, system-specific optimizations are

not performed.

By increasing the transparency of this design’s hardware and algorithmic scheduling, this IP

core helps to facilitate the transition of responsibilities among engineers of multiple disciplines,

in addition to expanding the usability of FPGA accelerated controllers for application specific

implementations.

1.2 Contributions

The contributions of this work are three-fold: (1) a novel, open-source architecture for a hard-

ware scalable, software configurable LQG controller is presented (and available for download at

Github/mcauwels), (2) the design of a modified multiply-accumulate tree which allows for element-

wise addition by reusing its adders, and (3) the memory management algorithm that allows for

matrices to be transposed across multiple BRAMs.

1.3 Thesis Outline

The structure of this thesis is as follows: Chapter 2 dives deeper into the motivation for the

trend towards incorporating control algorithms into FPGAs, as well as an overview of similar

algorithm’s hardware architectures. It concludes with an review of similar high-level tools, their

motivation, and highlights three commonly used, commercially available, tools. Chapter 3 presents

a brief introduction to basic control theory concepts and the algorithms for both LQR control and

Kalman filtering. Chapter 4 introduces the algorithm scheduling, the hardware architecture, and

software interfaces for the hardware scalable, software configurable LQG controller using the SDKF.

Chapter 5 performs an analysis of the proposed design against a pure software implementation as

well as a comparison of this controller’s resource & timing results against the most recent closely

https://github.com/mcauwels/HW_SW_LQG_Controller

www.manaraa.com

4

related works. Chapter 6 wraps up the thesis with a summary of the results and a discussion of

future work.

www.manaraa.com

5

CHAPTER 2. RELATED WORK

This chapter explores the prevailing popularity of Kalman filters and LQG controllers as well

as the trend of moving controllers for complex, large scale systems to FPGAs. Other relevant pub-

lications in the topics of hardware accelerated architectures, specifically those for matrix inversion,

Kalman filters, and LQG controllers, are presented. Additionally, the concept of hardware/software

co-designed architectures is explored as well as a brief introduction to HLS, highlighting several

popular commercially available HLS tools.

2.1 LQG Relevance and Industrial FPGA Controllers

This section extrapolates on the continued use of Kalman filters and LQG controllers. Addi-

tionally, the motivation behind implementing complex control algorithms in FPGAs, specifically in

industrial applications, is presented.

2.1.1 Relevance of Kalman Filters and LQG Controllers

While Kalman filters and the Linear Quadratic Gaussian (LQG) control-law were developed

in the 1980s, research into moving these algorithms into industry is still being conducted. Ding

et al. (2019) conducted a survey of model-based control and filtering techniques used in indus-

trial cyber-physical systems, which explores how Kalman-based algorithms are being utilized in

industrial applications. Additionally, the challenges of these approaches, such as scalability and

algorithmic complexity, are summarized. Similarly, Kozák (2012) presents a comprehensive list of

control algorithms and their uses (or barrier to use) in industrial applications. In regards to LQG

controllers, Kozák argues that a major barrier to their acceptance into industry is the lack of ac-

curate linear state-space models, though he points out this may change as new state-identification

methods are still being developed.

www.manaraa.com

6

Since the LQG control algorithm has been around for awhile, it has been applied to many

research applications. For example, Wanli et al. (2014) applied a LQG-like control algorithm

to successfully balance a single-inverted pendulum cart. Eide (2011) was also able to balance

an inverted-pendulum with an LQG controller; however, when comparing their simulated LQG

algorithm against their LQR algorithm (with a proportional gain observer), they determined the

LQR controller obtained less overshoot and had a lower settling time, though they admit that

could have tuned their Kalman-Bucy filter’s weighting matrices to achieve similar performance.

As pointed out by Nestorović and Oveisi (2018), a disadvantage to the LQG algorithm in that it

ignores any unmodeled dynamics.

Recently, LQG algorithms are growing in popularity and are being chosen as the “go-to” stabi-

lizing control algorithm for linearized systems. Liu et al. (2018) implement a LQG-like technique

to validate their gain-scheduling algorithm, which specifically targeted controlling the torque of

variable stiffness actuators (VSA). Additionally, Rodrigues da Silva et al. (2017) demonstrate their

hardware-in-the-loop testing technique, which was applied to an electrical power assisted steering

(EPAS) system utilizing a stabilizing LQG algorithm. These two recent works (and many presented

in Section 2.2.3) show how the LQG algorithm is becoming more commonplace when researchers

need an algorithm for stabilizing a linearized system.

2.1.2 Embedding Control Algorithms in FPGAs

A notable trend has been emerging over the past 15 years: FPGA implementations of control

algorithms are steadily growing. Monmasson et al. (2011) surveyed FPGA-based control methods in

power electronics and power drive applications. They discuss the advantages (such as higher sample

rates, deterministic timing, etc.) and disadvantages (long design time, unfriendly programming

syntax, etc.) of having hardware controllers implemented via FPGAs. Additionally, Monmasson

and Cirstea (2013) critique 13 FPGA-implemented controllers for industrial control applications.

They introduce a brief overview to these various control methods and discuss their contributions

to the power electronics and FPGA communities.

www.manaraa.com

7

An example of an application that could benefit from FPGA implemented controllers is nan-

otechnologies. As discussed by Devasia et al. (2007), there are many difficulties in designing

nanopositioning devices, such as high resolution, fast sample rates, and accurate position sens-

ing & feedback control. However, Xie et al. (2019) was able to circumvent some of these difficulties

by developing a high speed imaging architecture implemented in an FPGA. Because they used a

hardware accelerated architecture, they were able to lower the bandwidth of the mechanical nanopo-

sitioner via an H∞ and iterative learning control methodology. Besides being used for embedded

controllers, FPGAs have also been used to develop state-of-the-art test beds. Šetka et al. (2017)

utilized an ARM/FPGA System-on-Chip platform to develop a test bed for controlling a triple

inverted pendulum.

2.2 Hardware Accelerated Architectures

Since the emergence of LQG controller in the 1980s, many works that have attempted to ac-

celerate the Kalman state estimator within the LQG controller, specifically the matrix inversion

operation. To better understand the types of algorithms and hardware architectures available, a

literature survey of matrix inversion, Kalman Filters, and LQG algorithms and hardware architec-

tures is presented.

2.2.1 Matrix Inversion

Since the bottle-neck for the Kalman filter algorithm is the n× n matrix inversion, this survey

begins with algorithms for matrix inversion. A first approach is to follow the standard formula for

matrix inversion - the adjoint divided by the determinant. Kumar et al. (2014) implemented this

method in an FPGA for a third-order system, since there is a straight forward closed form solution

for a 3× 3 matrix inversion. Note that for 4× 4 and larger matrices, this method quickly becomes

intractable due to the exponential increase in computational power required.

Several researchers (Irturk et al., 2009; Santos et al., 2015) have turned to QR decomposition to

develop an architecture for matrix inversion. This method involves decomposing a matrix (A) into

www.manaraa.com

8

two matrices: an orthogonal (Q) and a triangular (R) matrix. The crux of this method is twofold:

the inverse of an orthogonal matrix Q−1 is equivalent to its transpose (QT) and the inverse of

a triangular matrix R−1 is less computationally intense. Irturk et al. (2009) use the modified

Gram-Schmidt algorithm to compute R−1 and develop a matrix computing core that allows them

to perform matrix inversion. An advantage of their design is that their architecture can scale

for systems of size n = 4, 6, 8. More recent work on QR Decomposition is presented by Santos

et al. (2015) where they solve for Q and R by using a Givens rotations. Note that this method

requires a computationally complex inverse square root, though the authors accelerate their design

by performing a piecewise polynomial technique to approximate this calculation.

A more common approach to matrix inversion is to leverage the Faddeev algorithm, which

utilizes the Schur compliment to iteratively compute the inverse of a matrix. This recursion is ideal

for a pipelined systolic array, which is the approach taken by Yat Tin Lai et al. (2004). Note that

this implementation also approximates the algorithm’s division by using lookup tables to perform

an approximated fixed-point division. This allows them to achieve better performance at a modest

cost in computational accuracy.

A newer approach to matrix inversion is presented by Xu et al. (2018), where they constrain

their design space to matrix inversion of a positive definite symmetric matrix. They then propose

a new algorithm: the Simple Positive-definite symmetric Matrix Inversion (SPMI). This method

takes advantage of the matrices structure so that matrix inversion is performed by an iterative

multiply and add operations, as well as a few division operations.

2.2.2 Kalman Filters

Besides being an optimal state estimator, another highly sought after property of a Kalman filter

is it’s ability to filter out Gaussian noise prevalent in a system or its sensors. However, the Kalman

filter’s algorithm requires a matrix inversion, which is time consuming for an embedded CPUs

to compute, even in lower-order systems. Thus, there has been a steady interest in accelerating

Kalman filter algorithms through hardware implementations.

www.manaraa.com

9

Application specific architectures seek to accelerate the Kalman filter algorithm for a specific

design goal. A common design goal is to achieve sub-microsecond sample rates, as seen in Liao

et al. (2019) and Phuong et al. (2010). These implementations achieve 2µs and 5µs sample rates

by taking advantage of their system’s low dimensionality. Another design goal is high throughput,

which is common in image filtering. Johnson et al. (2017) present an example of a high throughput

architecture which uses a modified Faddeev algorithm and systolic array to create a highly pipelined

and efficient architecture for their 3rd-order system. Other research applications have developed

accelerated hardware architectures with the goal of low input-output overhead and increased parallel

computations. Nazir et al. (2015) give an example of this, where multi-channel brain activity is

detected and filtered using a 4th-order Kalman filter. Fonseca et al. (2013) report a 2-3 order of

magnitude performance increase when incorporating a Kalman filter for ballistic rocket tracking

in hardware compared to a software approach. These examples show the desire to incorporate

accelerated Kalman filter algorithms into cutting edge technology.

Several Kalman filter implementations stood out among the rest of the reviewed works due

to the author’s decision to use a different variation of a Kalman filter algorithm. The works

presented by Akgün et al. (2018) and Mills et al. (2016) sought to utilize a nonlinear variation - an

Extended Kalman filter algorithm (EKF). These works publish hardware accelerated architectures

for this algorithm, either by using FPGA specific concepts (i.e., dynamic partial configuration)

or piecewise affine modeling of nonlinear systems. Kettner and Paolone (2017) used a Sequential

Discrete Kalman Filter (SDKF) in their hardware architecture to perform the state estimation

of power distribution systems. This algorithm avoids matrix inversion by performing an iterative

loop of scalar inversions, with the caveat that there is no covariance between the systems sensors

(i.e., each sensor measures one value). Babu and Detroja (2019) point out that this limits the

applicability of such a system, so they propose an Inverse Free Kalman Filter. While this work

does not present a hardware accelerated approach, they provide two numerical examples and the

results of their algorithm’s simulation. One drawback to their approach is that their approach

www.manaraa.com

10

relies on the assumption that the covariance of the error is orders of magnitude less than the errors

variance, thus limiting their algorithm’s applicability as well.

In summary, it was reviewed that much of the application specific Kalman filter architectures

that perform matrix inversion are low-dimensionality. For higher dimensionality, it appears that

the trend is to avoid matrix inversion; however, these algorithms make simplifying assumptions

that limit their uses to their specific systems.

2.2.3 LQG Controllers

Since their conception in the 1980s, LQG controllers have been utilized in a variety of applica-

tions; however, due to the matrix inversion in the Kalman filter and its computational demands,

researching how to accelerate LQG controllers is still a relevant research area. Work towards im-

plementing LQG controllers into FPGAs started as early as 1996, when Garbergs and Sohlberg

(1996, 1998) developed several variations of a hardware LQG controller to balance an inverted

pendulum system. While they implemented both a floating-point and fixed-point variation of their

architecture, the entire LQG control loop was estimated to take 700 clock cycles for a time-invariant

Kalman Filter and 5700 clock cycles for a time-variant one.

Since FPGA technologies have advanced drastically since the mid-90s, a more recent review of

hardware accelerated LQG controllers is presented. Priewasser et al. (2014) present a comparison

of a hardware PID and an LQG controller to control a novel small-signal model for the variable

switching frequency of DC-DC converters. This model is relatively low dimensionality (3rd-order)

and the authors implemented their LQG controller using a time-invariant Kalman filter on an Altera

Cyclone-IV FPGA. Another LQG implementation is presented by Cupelli et al. (2015) where they

implement a decentralized LQG controller to regulate the DC bus of a MVDC microgrid. The

authors implement a 2nd-order LQG controller with an EKF in a Xilinx Virtex-5 FPGA using

National Instruments’ (NI) Real Time Target toolbox. Benkhoud et al. (2017) incorporates a

hardware LQG controller to control their Quad Tilt Wing unmanned aerial system (UAS) and

demonstrates their computer aided design (CAD) methodology for rapid control prototyping. Their

www.manaraa.com

11

model for their UAS is a 12th-order model, which is larger than any of the works presented; however,

their focus is on their methodology, not on their controller implementation, so the details of this

design are not reported. A fixed-point hardware accelerated LQG controller was also implemented

in Deliparaschos et al. (2015, 2017) to explore systematic sensor selection. The authors incorporate

a hardware/software design approach to their architecture and present an LQG controller which

uses a Kalman-Bucy time-invariant filter. Similar to the other works presented, their system is

lower-dimensionality (3rd-order), though their application requires a 100µs update rate. They

achieve such a low update rate through the use of an FPGA, which was translated from their

Matlab simulation to HDL primarily through Matlab’s HDL Coder library.

2.3 HW/SW Codesigns

Individually, software and hardware have several advantages and disadvantages. Software is

flexible, quickly encoded, and has a well-defined coding standard; however, it’s non-determinism

makes it difficult to model and validate. On the other hand, hardware is deterministic, specialized,

and parallelizable; however, it has a long design time, unfriendly coding syntax, and relatively

clunky design & simulation tools.

To combine the best of both methods, a hardware/software (HW/SW) codesign methodology

has been growing among embedded hardware researcher groups. This methodology seeks to com-

bine the flexibility of software with the high computational speeds of hardware. In fact, Balasch

et al. (2018) present a course they have introduced at their university to teach this concept to

undergraduate students.

Several applications of HW/SW codesigns have been published in recent works. Several pre-

viously mentioned works have followed this methodology (Deliparaschos et al., 2015; Mills et al.,

2016), thought their main goal was more towards application specific designs rather than user

reusability. Al-Saaty et al. (2017) have presented a HW/SW Codesigned self-tuning PID con-

troller. This project was designed to reduce the offline learning steps associated with tuning a PID

controller. Another application of this methodology is presented by Lee et al. (2018) where they

www.manaraa.com

12

present a precision time protocol (PTP) slave transparent clock (TC) architecture to exceed the

safety requirements of IEC/IEEE 61850-9-3 precision time profile for power utility automation.

Zhang et al. (2015, 2017) presents two HW/SW codesigned architectures for user configurable

controllers, one for LQR control and another for Model Predictive Control (MPC). These controllers

were designed for a general case and to facilitate the transition between complex control algorithms

and real-world implementations on embedded platforms. In this way, the authors have given the end

user the ability to scale the hardware architecture to accommodate their own performance/resource

trade-off, thus allowing their design to fit into any FPGA platform. Additionally, they design their

system so that the control parameters are software driven, i.e., the end-user can configure & tune

the control characteristics in software rather than hardware. This allows the designs to be more

user-friendly, since compiling C code is less time consuming than resynthesizing and routing a new

hardware design. A similar design for an Unscented Kalman Filter (UKF) is carried out by Soh

and Wu (2017).

While this methodology combines the best parts of both software and hardware, it also combines

their worst parts as well. As pointed out by Kumar et al. (2017), this methodology has not

progressed from research into industry, mainly due to the complexity of the software/hardware

interface. Thus, HW/SW codesigns are difficult to formally verify, which keep them from becoming

prevalent in industry, especially in safety critical applications. Additionally, the initial hardware

design is still time consuming, and adding additional time to validate the software interface is

required.

2.4 High-Level Synthesis Tools

In this section, a brief introduction to the concept of high-level synthesis (HLS) is presented.

Additionally, several commercially available tools - Xilinx’s VivadoHLS, Matlab’s HDL Coder, and

National Instrument’s LabVIEW FPGA - are explored.

www.manaraa.com

13

2.4.1 High-Level Synthesis Overview

As pointed out by Nane et al. (2016), the major drawback of FPGAs is their long development

phase, primarily due to the low-level of abstraction required to of correctly generating hardware

through the use of HDL. To try to reduce this design time, and to expand the user-base of FPGAs,

the development and use of High-Level Synthesis (HLS) has been steadily growing. While there

are a variety of HLS tools available, they all operate on the same principle: have the developer use

a well known high-level interface (software programming language, block diagram design, etc.) to

specify the design’s functionality and let the HLS program auto-generate functionally similar HDL

code. In this manner, the use of FPGAs will no longer be restricted to hardware developers, since

high-level programming languages are utilized by many different types of engineers. Lahti et al.

(2019) point out that other benefits include faster exploration of the project’s design space, reuse of

design for varying platforms, and verification acceleration via the use of software verification tools.

Like any design choice, while there are many benefits of HLS, there are several drawbacks and

criticisms still prevalent today. The biggest drawback to HLS is automatically generating correct

and optimal HDL from software. As discussed by Lahti et al. (2019), when presented with this

challenge, HLS developers tend towards two different approaches: developing their own language

for HLS design (usually based on a well-known language) or utilizing an already well-developed

language. Notice that developing a language specific to HLS negates the benefit of using a well

understood language, which was intended to expand the usage of FPGAs. Additionally, using

a well-defined language is difficult, since many constructs for generating optimized HDL will be

necessary. As pointed out by Nane et al. (2016), another heavily criticized drawback to HLS

is that typical optimizations offered via HLS (loop-unrolling and pipelining) are misunderstood

by software engineers, since typical software optimizations (caching and data reorganization) are

drastically different from hardware ones. This may lead many software programmers astray, leading

them to a worse or sub-optimal design compared to their optimized software solution. Lastly, the

biggest criticism of HLS is that it produces lower quality HDL compared to manually generated

HDL designs. As pointed out by Lahti et al. (2019), the basic trend in the hardware community

www.manaraa.com

14

is that manually generated HDL has a higher quality than HLS; however, they do not undersell

the benefits of HLS, specifically, the faster rate of development and an increase in the designer’s

productivity.

2.4.2 Xilinx’s Vivado HLS

One of the most advanced HLS tools available is Xilinx’s Vivado HLS. Since its development

in 2008, Xilinx’s goal has been to develop a design suite to increase hardware developer’s perfor-

mance by utilizing C, C++, or System C code to generate high quality HDL for implementation

with their FPGAs (Feist, 2012). To support their HLS effort, Xilinx has developed many libraries,

architectural optimization options, and verification techniques, which allow their HLS implementa-

tions quality of results to rival manually generated HDL designs (Xilinx, b). Beyond the benefits of

HLS listed in Section 2.4.1, Vivado’s HLS uses optimization directives to allow the user to specify

which optimization technique to apply to a given segment of C code Xilinx (a). A benefit of this is

that it allows users to experiment with different optimization directives to achieve the performance

that best suites their needs.

As given in Xilinx (a), VivadoHLS’s synthesis is carried out in three phases: scheduling, binding,

and control logic extraction. The scheduling phase determines the timing of the synthesized design

based on user directives, targeted device, and clock frequency. Binding evaluates the C code’s

operations and binds each operation to resources specific to the targeted platform. Control logic

extraction develops a Finite State Machine (FSM) which matches the order of the C code’s execution

to obtain functionally equivalent code.

Many of the works presented in presented in Section 2.2.2 and Section 2.2.3 were developed

using Xilinx’s Vivado HLS design suite (Liao et al., 2019; Cupelli et al., 2015).

2.4.3 Mathlab’s HDL Coder

Mathwork’s Matlab is a powerful modeling and simulation tool used by many different disciplines

for system develop and simulation. A key feature of Matlab is the Simulink toolbox: a drop-

www.manaraa.com

15

and-drag user interface which allows designers to visually create and test their designs. Simulink

specifically caters to the development of stabilizing controllers with their interactive PID tuning

and their Control System toolbox (Mathworks, a). However, as pointed out by Sumam and Shiny

(2017), transferring Matlab/Simulink designs to HDL may introduce errors into the HDL design,

further increasing the HDL development cycle. Additionally, if a developer was to update their

Matlab/Simulink design, they would have to manually update and verify their HDL design, further

increasing their development time.

To combat these problems, Mathworks has developed a HDL Coder library, which automatically

generates synthesizable HDL code (Mathworks, b). A major benefit of their HDL Coder is that

it allows for tracability between simulation and design, which is required in many safety critical

applications (i.e., aerospace, medical technologies). Additionally, integrating HDL generation with

the Matlab simulation allows designers to begin verification early on in the design (Mathworks, c).

Matlab’s HDL Coder integrates many HLS synthesis optimizations, which allow the user to explore

hardware quantization and several other optimizations. Another benefit of using HDL Coder is

that it is portable across many FPGA manufacturers, allowing for one design to be programmed

into different types of FPGAs.

While this commercially available product may allow for faster development and testing of

designs, it is still under development. As mentioned by Deliparaschos et al. (2017), Matlab’s

HDL Coder is currently limited when it comes to multi-dimensional matrices, which forces users

to manually build HDL alongside the auto-generated HDL, breaking the tracability advantage of

HDL Coder.

2.4.4 LabView’s FPGA Tool Suite

Similar to Matlab’s HDL Coder, National Instrument’s (NI’s) LabVIEW FPGA Module al-

lows FPGA programming on a higher level of abstraction. The LabVIEW FPGA Module provides

a graphical interface and a unified development tool-chain to accelerate FPGA programming by

abstracting away the low-level signal routing prevalent in typical HDL development (NationalIn-

www.manaraa.com

16

struments, b). However, beyond being susceptible to many of the drawbacks prevalent within other

HLS tools, many of their functionalities are supported with only NI equipment (NationalInstru-

ments, a). Despite this, several previously mentioned works (Ibañez et al., 2017; Al-Saaty et al.,

2017; Benkhoud et al., 2017) have successfully implemented their designs with NI’s LabVIEW

FPGA module and NI’s myRIO development boards.

www.manaraa.com

17

CHAPTER 3. LQG ALGORITHM

This chapter gives an introduction to the concept of state-space as well as the algorithms for

the Linear Quadratic Regulator (LQR), the Discrete Kalman Filter (DKF), and the Sequential

Discrete Kalman Filter (SDKF). The LQG controller presented in this work is a combination of

the LQR optimal control-law and the SDKF least-squares state estimator.

3.1 State-Space Modeling

State-space is a mathematical way of expressing a the physical response of a system (also referred

to as a plant) via a set of dynamical equations (Chen, 1999). For this embedded application, a

linear discrete-time state-space model is used to represent the plant’s dynamics, which are computed

based on the system’s current dynamics as well as any input to the system. The standard notation

for this state-space is:

xk+1 = Axk +Buk

yk = Cxk +Duk

(3.1)

where,

• n represents the number of states of the system.

• m represents the number of inputs to the system.

• p represents the number of outputs from the system.

• xk is the n× 1 state vector that represents each state, at time step k.

• uk is the m× 1 input vector that represents the input(s) of the system, at time step k.

• yk is the p× 1 output vector that represents the output(s) of the system, at time step k.

• A is the n× n state matrix that represents the system’s internal dynamics.

www.manaraa.com

18

• B is the n×m input matrix that represents the effects of each input upon the system.

• C is the p × n output matrix that represents the effects of each of the system’s states upon

each of the system’s outputs.

• D is the p × m feed-through matrix that represents the direct effect the input has on the

output.

A benefit of using state-space is that it easily maps to a closed-loop control system, as seen in Fig.

3.1. Another is that state-space is well suited to model multiple-input-multiple-output (MIMO)

systems, due to its matrix structure. As systems are becoming more and more complex, state-space

models are increasingly used in research; however, larger systems are difficult and time consuming

to model accurately. Thus, interest in automating and aiding the development of tractable models

is still a highly researched subject (Kozák, 2012).

B

D

z -1

A

C
uk ykxk

xk+1

Physical Plant

Figure 3.1 A pictorial representation of (3.1), with respect to a closed-loop system.

Note that an LQG controller can be developed for systems which are both controllable and

observable. A system is said to be controllable if any state can be influenced from the system’s

input and a system is said to be observable if any state can be recreated from the system’s output

(Chen, 1999; Phillips et al., 2015). While there exists multiple ways to check a system for con-

trollability and observability, the simplest check is to check the rank of the Controllability (C) and

Observability (O) matrices, as demonstrated by (3.2-3.3). Should the rank of C and of O are both

greater than or equal to the number of states of the system n, then a stabilizing LQG controller

can be designed for the system (Chen, 1999; Phillips et al., 2015).

rank{C} = rank

{[
B AB A2B · · · An−1B

]}
≥ n (3.2)

www.manaraa.com

19

rank{O} = rank

{[
C CA CA2 · · · CAn−1

]T}
≥ n (3.3)

3.2 Linear Quadratic Regulator (LQR)

A Linear Quadratic Regulator (LQR) is an optimal state-feedback control-law; it is optimal in

the sense that the controller’s output is minimized across a cost function; in this case, the quadratic

cost function seen in (3.4).

J(u) =

∞∑
k=1

xTkQxk + xTkNuk + uTkRuk (3.4)

Within the cost function are three weighting matrices: Q, N , and R. These correspond to the

desired state cost, state-input cost, and input cost, respectively (Otaga, 1987). These matrices

are system and controller performance specific, so there is no set way to determine these for any

arbitrary system, though a few heuristics exist (Otaga, 1987). Once these matrices are tuned

(usually via simulation) to obtain the desired controller performance, a closed form solution to this

cost function can be found via the discrete-time algebraic Riccati equation (3.5).

P = ATPA− (ATPB +N)(R+BTPB)−1 +Q (3.5)

Once (3.5) is solved and P is obtained, the static gain matrix, K, for the controller can be

found via (3.6).

K = (R+BTPB)−1(BTP +NT) (3.6)

The state-feedback aspect of the controller is performed by (3.7), which produces the optimal

output for the given weighting matrices Q, N , and R.

uk = Kxk (3.7)

Thus, the closed-loop system from (3.1) can be combined with (3.4) to obtain (3.7).

xk+1 = (A−BK)xk (3.8)

www.manaraa.com

20

Note that a weakness of any state-feedback control-law is the assumption that all states of the

system are available for the controller to use. Practically, this is not a valid assumption, since

all states of a system would have to be measured using a physical sensor, which can be infeasible

due to cost and/or physical limitations. However, it may be possible for a system to estimate

unmeasured states from measured ones, i.e., the systems is observeable (Phillips et al., 2015).

Thus, it is common to see a state-estimator combined with an LQR control-law when implemented

on a physical system.

3.3 Kalman Filter Algorithms

As mentioned, a state-estimator is likely needed to use a state-feedback controller. While

many state-estimators exist, a Kalman filter uses least-squares regression to obtain optimal state-

estimates, even in the presence of input & system noise (Brown and Hwang, 2012). The updated

system model that the Kalman filter is based on, as well as an explanation of its components, are

elaborated upon in Section 3.3.1. While many versions of the Kalman filter exist, I will specifi-

cally be referring to the Discrete Kalman Filter (DKF) and the Sequential Discrete Kalman Filter

(SDKF). Both of these Kalman filters perform a prediction and then an estimate of the system

states. The prediction and estimation stages will be described for both the DKF and SDKF in

Sections 3.3.2 and 3.3.3, respectfully.

3.3.1 Kalman Filter Model

For both the DKF and the SDKF, the plant’s state-space model differs slightly from 3.1 to

include noise, as seen in (3.9) and Fig. 3.2.

xk+1 = Axk +Buk + wk

zk = Hk + vk

(3.9)

Note that there are some subtle differences between (3.1) and (3.9): process noise (wk) and

measurement noise (vk) are added to the state-update and state-output equations, respectively.

Additionally, this model assumes that there is no feed-forward (D) relationship between the input

www.manaraa.com

21

B z -1

A

H
uk-1 zkxk-1

xk

wk vk

Kalman Filter Plant Model

Figure 3.2 A pictorial representation of (3.9) with respect to a closed-loop system.

and the output. Should any system have a D matrix in its state-space model, a state-transformation

should be performed such that the feed-forward component is absorbed into the state-update equa-

tions. This Kalman filter model also replaces the output matrix (C) with the sensor matrix (H).

The subtle difference is that the H matrix is the relationship between the system states and the

sensor output whereas the C matrix is the relationship between the system states and the system

output. For most practical purposes, these two matrices are equivalent.

The noise vectors presented in (3.9) are both Gaussian white noise vectors, which are modeled

as a zero-mean, normally distributed, uncorrelated spectral white noise (Brown and Hwang, 2012).

The white noise vectors, and their corresponding covariance matrices, are defined in (3.10).

wk ∼ N(0, Qk) vk ∼ N(0, Rk)

Qk = E[wkw
T
k] Rk = E[vkv

T
k] E[wkv

T
k] = 0

(3.10)

where the notation ∼ N(µ, σ2) is read as “normally distributed process with µ mean and σ2

variance” and the notation for the expected value of a random process is given as E[·]. Additionally,

the system covariance (Qk) and measurement covariance (Rk) matrices are defined in (3.10). Note

there is a distinction between these covariance matrices from (3.10) and the weighting matrices

from (3.4).

The purpose of the Kalman filter is to perform a recursive least-squares regression across a

random variable to minimize that variable’s error. In both the DKF & SDKF, the random variable

is the state-vector (xk), whose error (ek) they seek to minimize. Both algorithms do this by first

performing a prediction (based on the system’s dynamical model) and then an estimation (based

www.manaraa.com

22

on the system’s previous state and measurement error). Therefore, it is necessary to distinguish

between the predicted state-vector (x̂−k) and the estimated state-vector (x̂+k). With these predicted

and estimated state-vectors, their corresponding error vectors and covariance matrices are defined

by (3.11).

e−k = xk − x̂−k e+k = xk − x̂+k

P−k = E[e−k (e−k)T] P+
k = E[e+k (e+k)T]

(3.11)

3.3.2 Prediction Stage

The DKF’s and the SDKF’s prediction stage is identical: the previous state estimates and the

previous inputs are fed into the state-update equation to predict the next state. Additionally,

the prediction’s error covariance matrix (P−k) is updated based on the system’s dynamics (A), the

system’s noise covariance matrix (Qk), and the estimate’s error covariance matrix from the previous

time step (P+
k−1). These equations are given in (3.12) and represented by Fig. 3.3.

x̂−k = Ax̂+k−1 +Buk−1

P−k = AP+
k−1A

T +Qk

(3.12)

3.3.3 Estimation Stage

The key difference between the DKF and the SDKF lies in the estimation stage. For the DKF,

the estimation stage involves a p× p matrix inversion, as seen in (3.13).

Kk = P−k H
T
k (HkP

−
k Hk +Rk)−1

x̂+k = x̂−k +Kk(zk −Hkx̂
−
k)

P+
k = P−k −KkHkP

−
k

(3.13)

where the p× p matrix inversion exists in the (HkP
−
k Hk +Rk)−1 step of the DKF algorithm.

Unlike the DKF, the SDKF iterates through its estimation stage p times. Therefore, additional

notation for this iterative process is introduced in (3.14).

zk,i = (zk,i) Hk,i = rowi(Hk) Rk,i = diag(Rk) (3.14)

www.manaraa.com

23

AT

vk

xk̂
–

uk-1

zkwk

Pk-1
+ Pk

–

B

A

Qk

A

̂ +xk-1

Prediction Stage

Plant

Figure 3.3 A pictorial representation of (3.12), showing how the prediction stage of the

Kalman filter is performed using the previous state-estimate & input, modeled

dynamics of the system, and the system’s error covariance matrix Qk.

where zk,i is the ith element of the input sensor vector zk, Hk,i is the ith row of the sensor matrix

Hk, and Rk,i is the ith diagonal element of the sensor covariance matrix Rk. Additionally, the initial

conditions of the SDKF’s estimation stage (i.e., i = 0) are given in (3.15).

x̂+k,i=0 = x̂−k P+
k,i=0 = P−k (3.15)

The estimation equations in 3.16 are repeated p times to obtain the estimated state-vector (x̂+k).

Kk,i = P+
k,i−1H

T
k,i(Hk,iP

+
k,i−1H

T
k,i +Rk,i)

−1

x̂+k,i = x̂+k,i−1 +Kk,i(zk,i −Hk,ix̂
−
k,i−1)

P+
k,i = P+

k,i−1 −Kk,iHk,iP
+
k,i−1

(3.16)

Note that the DKF and SDKF algorithms are equivalent given the following assumption: the

measurement covariance matrix (Rk) is diagonal, i.e., the sensor measurements are uncorrelated

(Kettner and Paolone, 2017; Brown and Hwang, 2012). This assumption is reasonable if each

sensor only gives information about one measured state; however, if one sensor contributes to the

measurement of two or more states, then the SDKF algorithm cannot be used.

www.manaraa.com

24

CHAPTER 4. ARCHITECTURE

This chapter presents how the HW/SW LQG controller schedules the LQG algorithm, a detailed

description of the hardware architecture, and how the software interfaces with the LQG hardware

architecture. Note that this architecture is designed for using 32-bit floating point (IEEE 754)

values for all arithmetic operations.

4.1 Algorithm’s Scheduling

The LQG algorithm implemented in this controller utilizes equations (3.7, 3.12, and 3.16) from

Chapter 3. Note that these equations are sequential in nature: all of the computations of 3.12 must

be performed before any of the computations in 3.16. While this inherent sequential nature of the

LQG algorithm is not well suited for hardware, the independent matrix arithmetic operations are;

these individual computations contain a high degree of parallelism. Thus, the hardware accelerates

the algorithm’s computations by completing as many similar types of matrix arithmetic operations

(e.g., matrix, vector, or scalar addition/multiplication operations) as it can before switching to a

new arithmetic operation. The current breakdown of the LQG algorithm’s equations is elaborated

upon in Sections 4.1.1-4.1.3.

4.1.1 SDKF’s Prediction Stage

The first step in the LQG algorithm is the prediction stage of the SDKF. The two equations

presented in (3.12) consist of two matrix-matrix multiplications, two matrix-vector multiplications,

a matrix addition, and a vector addition. Thus, (3.12) was broken into two states: one which

performs the matrix-matrix & matrix-vector multiplication and the other that performs the both

the matrix and vector additions, as seen in Table 4.1.

www.manaraa.com

25

Table 4.1 LQG’s Prediction Equations Scheduling Details

Order A B Op. Result

1 P+
k,i−1 AT × P+

k,i−1A
T

2 A xk × Axk
3 B uk × Buk
4 A P+

k,i−1A
T × AP+

k,i−1A
T

5 AP+
k,i−1A

T Qk + P−k
6 Axk Buk + x̂−k

Note that the two matrix-matrix multiplications have a dependency: P+
k,i−1 × AT must be

completed before A×P+
k,i−1A

T can proceed. To avoid stalling any pipelined processes, A× xk and

B × uk are performed between P+
k,i−1 ×A

T and A× P+
k,i−1A

T .

4.1.2 SDKF’s Estimation Stage

The second step in the LQG algorithm is the estimation stage of the SDKF. The three equations

presented in (3.16) consist of two matrix-vector multiplications, one vector-vector multiplication,

three matrix-scalar multiplications, one scalar addition, one scalar subtraction, one vector addition,

one matrix subtraction, and one scalar inversion. Thus, (3.16) was broken into three states: the

matrix-vector multiplications & the scalar arithmetic, the scalar-matrix multiplication, and the

vector & matrix addition/subtractions, as seen in Table 4.2.

Note the sequential nature of the equations in (3.16). There are several places where it makes

the most sense to perform one computation, such as P+
k,i−1H

T
k,i first, since the next element of

the equation relies on that computation. There are some additional computations which are inde-

pendent of one another: Hk,iP
+
k,i−1 is independent of P+

k,i−1H
T
k,i and both are also independent of

Hk,ix̂
+
k,i−1. However, all three of these computations require some form of matrix multiplication.

Thus, they are grouped together so that any parallelization the hardware may receive by performing

the same type of operation is achieved.

www.manaraa.com

26

Table 4.2 LQG’s Estimation Equations Scheduling Details

Order A B Op. Result

1.a P+
k,i−1 HT

k,i × P+
k,i−1H

T
k,i

1.b Hk,i P+
k,i−1 × Hk,iP

+
k,i−1

2 Hk,i P+
k,i−1H

T
k,i × Hk,iP

+
k,i−1H

T
k,i

3.a Hk,i x̂+k,i−1 × Hk,ix̂
+
k,i−1

3.b Ri Hk,iP
+
k,i−1H

T
k,i + Hk,iP

+
k,i−1H

T
k,i +Ri

4.a Hk,iP
+
k,i−1H

T
k,i +Ri 1 ÷ (Hk,iP

+
k,i−1H

T
k,i +Ri)

−1

4.b zk,i Hk,ix̂
+
k,i−1 − zk,i −Hk,ix̂

+
k,i−1

5 (Hk,iP
+
k,i−1H

T
k,i +Ri)

−1 P+
k,i−1H

T
k,i × Kk,i

6.a Kk,i (zk,i −Hk,ix̂
+
k,i−1) × Kk,i(zk,i −Hk,ix̂

+
k,i−1)

6.b Kk,i Hk,iP
+
k,i−1 × Kk,iHk,iP

+
k,i−1

7.a x̂+k,i−1 Kk,i(zk,i −Hk,ix̂
+
k,i−1) + x̂+k,i

7.b P+
k,i−1 Kk,iHk,iP

+
k,i−1 − P+

k,i

4.1.3 LQR’s Computation

The last step in the LQG algorithm is the LQR state-feedback control-law. Note that the

equation in (3.7) was modified to include a reference signal (uref). This allows the controller to

track a given state trajectory. Thus, this computation consists of two matrix-vector computations

and one vector addition. Thus, this computation was broken into one state, which performs both

of the matrix-vector computations first and then the vector addition, as seen in Table 4.3.

Table 4.3 LQG’s LQR Equations Scheduling Details

Order A B Op. Result

6.a Klqr x̂+k × Klqrx̂
+
k

6.b Klqr uref × Klqruref
6.c Klqrx̂

+
k Klqruref + uk

Note that the two matrix-vector computations are independent of one another; however, both

must be completed before the vector addition can be computed.

www.manaraa.com

27

4.2 Hardware Components

This section details the four main components to the scalable hardware architecture: (1) the

Multiply Accumulate Tree, (2) the Scalar-Adder & Inverter, (3) the Memory Management Archi-

tecture, and (4) the Finite State Machine.

⋮

FSM

Scalar
Inv

Scalar
Adder

AXI

BRAMs
Multiply-

Accumulate
Tree

Output
Shift-

Register

AXI

Figure 4.1 A top-level schematic of the LQG controller’s hardware architecture, showing

how the Finite State Machine (FSM) coordinates the configuration and schedul-

ing of the BRAMs, Multiply-Accumulate Tree, and Scalar-Adder/-Inverter.

4.2.1 Multiply Accumulate Tree

The main computing element of this controller is a slightly modified multiply-accumulate tree,

whose overall structure can be seen in Fig. 4.2. Notice that while a multiply-accumulate tree

efficiently performs matrix-matrix & matrix-vector multiplications, the LQG algorithm presented

in Section 3 requires scalar-matrix multiplication and element-wise addition/subtraction. Thus,

multiplexers were added between each stage in the multiply-accumulate tree to facilitate these

additional types of matrix arithmetic.

With the inclusion of these multiplexers, the multiply accumulate tree can be configured in

real-time into three different modes of operation: (1) a matrix-vector multiplier, (2) a scalar-

www.manaraa.com

28

A(1)
B(1)

A(0)

B(0)

A(1)

B(1)

B(i)

A(i)

…

… RC_Out

A(i – 1)

B(i – 1)

A(i)

B(i)

…

B(i – 1)
A(i – 1)

Depth = 1 Depth = 2 Depth = log2(i)

…

…

…

RC = 1 RC = k

log2(i) + k ≥ log2(n), where k ≥ 1

… …

…

Mode 1: Matrix-Vector Multiplication Mode 2: Scalar-Matrix Multiplication Mode 3: Element-wise Addition

…

A(x – 1)

B(x – 1)

A(x)

B(x)

…

A(x – 1)

B(x – 1)

A(x)

B(x)

…

A(x – 1)

B(x – 1)

A(x)

B(x)Mult(x)

Mult(x – 1)

Add(x – 1)

Figure 4.2 The schematic for the modified multiply-accumulate tree, showing its scala-

bility, as defined by the parameter Depth. The structure’s three modes of

operation are broken down below the main diagram, with a red dashed line

showing which path is operational in each mode. Additionally, the Reduction

Circuit (RC) is shown, which will help accumulate Mode 1 operations when

the number of matrix elements (n) is greater than the number of inputs (i).

matrix multiplier, and (3) an element-wise adder. The main benefit to this approach is that the

multipliers and adders within this structure are reused for many different operations, thus reducing

the amount of resources consumed in the design; however, one drawback is that the entire pipelined

multiply accumulate structure must be drained when switching between modes. While it may be

more time effective to stagger the pipeline so that different modes may finish while a secondary

mode is starting, this creates potential memory write conflicts. For this reason, it was deemed more

efficient to drain the pipeline than try to incorporate additional hardware to resolve any memory

write conflicts.

www.manaraa.com

29

Mode 1: Matrix-Vector Multiplier As the name mentions, this mode performs the

standard multiply-accumulate operations. Thus, matrix-matrix & matrix-vector multiplications

are computed at m(n×m)/Depth and (n×m)/Depth number of computations, respectively. Note

that if the number of multipliers (i) is less than the number of rows (n), then additional hardware

is needed to accumulate the partial sums. To do this, one or more reduction circuits (RC) are

incorporated into the hardware, which are based on designs from Zhuo et al. (2005). Notice that,

for a given i and n, the number of RCs needed (k) is given by (4.1).

log2(i) + k ≥ log2(n) (4.1)

Mode 2: Scalar-Matrix Multiplication In this mode, the output of the multipliers

is fed directly back to memory, rather than the output of the last RC. Note that this allows for

i number of multiplications to occur in parallel, rather than filling all but one of the multiply

accumulate tree’s inputs with zeros. Compared to this simplistic approach, there is a (n ×m)/2i

speedup, where n is the number of rows, m is the number of columns, and i is the number of

multipliers. A drawback to this approach is having i parallel write-backs to memory. How this is

handled will be further elaborated upon in Section 4.2.3.

Mode 3: Element-wise Addition Due to the LQG algorithm needing to perform matrix

and vector addition, an element-wise adder was needed. To allow for the adders within the multiply-

accumulate tree to be reused, multiplexers were added between the inputs to the adders and the

inputs to the multipliers. In this way, the adders could be directly fed their inputs rather than

multiplying elements by 1. Similar to Mode 2, this allows for a (n×m)/2i speedup, where n is the

number of rows, m is the number of columns, and i is the number of inputs. Note that this speedup

is achieved due to requiring at least one RC in the design to make the number of adders equal to

the number of multipliers. While this may not be necessary, it simplifies the memory write-backs,

which will be elaborated upon in Section 4.2.3.

www.manaraa.com

30

4.2.2 Scalar-Adder & Inverter

While the multiply-accumulate tree presented in Section 4.2.1 can be configured to perform

many of the computations in the LQG algorithm, two additional computing elements were added:

a scalar-adder and a scalar-inverter, as seen in Fig. 4.3.

BRAM_SA

AXI

RC_Out

1

SA_Out

Inv_Out

BRAM_SA_OutData

Figure 4.3 The schematic for the additional-scalar adder and scalar-inverter hardware.

Notice that BRAM SA is independent from the memory associated with the

multiply-accumulate tree. This allows for sensor values to be written without

having to design additional circuitry to prevent memory write-back conflicts.

The scalar adder circuit was added to increase the hardware’s parallelism. Notice that for

every iteration of the SDKF’s estimation stage, a scalar addition and a scalar subtraction must be

performed, as seen in 3.b and 4.b of Table 4.2. Rather than flush the entire multiply-accumulate

tree to perform these two operations, another adder is placed in parallel to allow these operations

to be performed while the multiply-accumulate tree is running.

The pinnacle operation of the SDKF is the scalar inversion, which is seen in 4.a of Table 4.2.

Since the multiply-accumulate tree does not have any division circuitry, a scalar inversion circuit

was needed. Since the scalar-addition is directly inverted, the output of the scalar-adder can be

fed into the scalar-inverter. Similar to the scalar-adder, the inverter is in parallel to the multiply

accumulate tree; however, due to the sequential nature of the algorithm and the computational

complexity of floating-point inversion, this parallelism results in minuscule performance increases.

While the opportunity for parallelism is helpful, the main reason these two arithmetic circuits

were placed aside from the main computing hardware is to remove the chance of a write conflict

when writing sensor values to the scalar adder/inverter’s block RAM (BRAM). By making this

www.manaraa.com

31

memory independent of the multiply-accumulate tree’s memory, the control path for the hardware

is simplified.

4.2.3 Memory Management Architecture

To coordinate which results get written back to each memory, multiplexers are incorporated

between all of the outputs of the modified multiply-accumulate tree, the scalar-adder & inverter,

and the software interface (AXI). Additionally, multiplexers were added between the memory’s

output and the multiply-accumulate tree’s inputs to allow for some pre-processing of the outputs.

All of these connections can be seen in Fig. 4.4.

0

B(0)

0

Add(0)

Mult(0)
RC_Out

AXI

Inv_Out

BRAM_A_InData(0)

Add(0)

Mult(0)
RC_Out

AXI

SA_Out

BRAM_B_InData(0)

BRAM_B(0)

BRAM_A(0)
BRAM_A_OutData(0)

BRAM_B_OutData(0)
BRAM_A_Sel(0)

BRAM_B_Sel(0)

A_Zero(0)

B_Zero(0)

A_Inv(0)

A(0)

Figure 4.4 The schematic for the memory management architecture, showing how the

multiplexers coordinate which input is fed into each BRAM and how the mul-

tiplexers modify the outputs of the BRAM before being fed into the multi-

ply-accumulate tree.

Notice that the main memory element is BRAM. These BRAMs are configured as simple-dual

port RAMs: a single read and single write of memory can occur within the same clock cycle, with

the read coming before any write. Since the multiply-accumulate tree has two inputs per multiplier,

at least one BRAM is associated with each input. For notation, these inputs were labeled A and

B, as were the BRAMs associated with these inputs (BRAM A and BRAM B).

www.manaraa.com

32

To better understand the memory structure, the variables stored in each BRAM are presented

in Table 4.4. Notice that the amount of memory scales in accordance with the dimensions of each

matrix (n, m, or p) and with the number of BRAMs available (2Depth). Additionally, temporary

variables (Tx,A/B) are introduced to allow matrices that remain constant, such as A, B, and Klqr,

to not have to be continuously re-written via software.

Table 4.4 Variables Stored Across the BRAMs

BRAM A BRAM B BRAM SA

Variable # of Addr Variable # of Addr Variable # of Addr

A
n2

2Depth
AT n2

2Depth
R n

PA
n2

2Depth
PB

n2

2Depth
zk p

T0,A
n2

2Depth
T0,B

n2

2Depth

T1,A
n

2Depth
T1,B

n

2Depth

T2,A 1 T2,B 1

T3,A n T3,B n

HA
np

2Depth
HB

np

2Depth

QA
n2

2Depth
QB

n2

2Depth

B
nm

2Depth
Klqr

nm

2Depth

xk
n

2Depth
uk

n

2Depth

uref
n

2Depth

The design of the memory architecture was challenging due to several issues inherent within the

controller’s specifications and algorithm. The first was deciding how the outputs of the multiply-

accumulate tree would be disseminated to each BRAM. The second was how to store matrices

across multiple BRAMs. The third was how to create matrices from the outer product of two

vectors (i.e., a n vector times a 1×m vector to create a n×m matrix). Each of these issues, their

solutions, and their justifications will be presented.

www.manaraa.com

33

BRAM Inputs With the modified multiply-accumulate tree, the scalar-adder & scalar-

inverter, and the software interface, there are (2Depth)2 + 4 potential inputs to the BRAMs. It was

determined that every BRAM needed the output of the multiply-accumulate tree’s Mode 1 (RC)

as well as the software interface (AXI). Additionally, the output of the scalar-inverter was tied

directly to BRAM A while the scalar-adder’s output was tied directly to BRAM B. This was

due to the scalar outputs being tied directly to each BRAMs scalar temporary variable (T2,A/B).

Thus the main issue was determining whether the direct outputs of each adder & multiplier

were to be fed into each BRAM. This would require a resource intense cross-bar, especially as the

depth of the multiply-accumulate tree grew. Rather than sacrifice the resources and timing for a

crossbar, it was determined that each BRAM will be fed the outputs of its associated multiplier &

adder. This way the chosen manner in which the matrices are stored is preserved (i.e., if the matrix

is stored in row-major order, it stays in row-major order). A severe drawback to this method is

that memory cannot be shared among BRAMs, thus making transposing a matrix challenging.

Additionally, it increases the difficulty of performing the outer product of two vectors.

Storing Matrices There are two logical ways to store matrices in sequentially in memory:

row-major and column-major order. However, since both matrix multiplication and addition are to

be implemented, a method for transposing matrices between these two orderings becomes necessary.

With the decision to give each BRAM only five inputs (as seen in Fig. 4.4), there are only two

instances in which a single value of memory can be written to any BRAM: when initializing memory

from software or from the output of the RC when the multiply-accumulate tree is in Mode 1. Thus,

a memory management mechanism was developed to leverage the output of the RC to allow for

BRAM A or BRAM B to switch between row-major or column-major ordering when performing

matrix-vector computations. The algorithm for switching the ordering is presented in Table 4.5,

where i is the current BRAM input (ranging from 0 to 2Depth − 1), j is the memory offset from

the base address (ranging from 0 to
NumElem

2Depth
, where NumElem are the number of elements in

the matrix or vector), k is factor by which the matrix elements are distributed among the BRAMs

www.manaraa.com

34

(ranging from 1 to
NumElem

2Depth − 1
), and l tracks the midway point where the offset switches between

being even to odd.

Table 4.5 BRAM Management Mechanism

BRAM WriteAddr(i) ← BaseAddr + j

Procedure: Switch Storage Scheme Procedure: Maintain Storage Scheme

If (i ≥ (2Depth − 1)) && (j ≥ NumElem

2Depth
) &&... If (i ≥ (2Depth − 1))

(k ≥ NumElem

2Depth − 1
) i = 0

i = 0; j = l + 1; k = 1; l = l + 1; If (j ≥ NumElem

2Depth
)

Else j = 0

j = k + l; k = k + 1 Else

If k ≥ NumElem

2Depth − 1
j = j + 1

i = i+ 1; j = l; k = 1 End If

End If Else

End If i = i+ 1

End If

Outer Product In the SKDF’s estimation stage, the outer product of a n× 1 & a 1× n

vector (Ki & Hi) is performed to create a n× n matrix. This is challenging because each element

of one vector must be multiplied by each element of the other vector. Without a crossbar, this is

accomplished by forcing each BRAM to store both n× 1 vectors in every BRAM, as seen in T3,A/B

of Table 4.2.3. A drawback to this solution is that it utilizes 2(n − 1) more addresses of memory

than a vector distributed across all BRAMs would. Note that this is a linear increase in memory

as n increases; however, this still results in a 7% to 30% increase in memory when compared to

utilizing a crossbar. Based on Table 4.2.3, if one BRAM is 32MB (1024 addresses of 32-bits) then

this increase doesn’t cause for additional BRAMs until n = 32. Thus, this solution is deemed

reasonable, since it has a minimal impact on the number of BRAMs used in the implementation of

this design.

www.manaraa.com

35

4.2.4 Finite State Machine

The finite state machine (FSM) coordinates the other hardware to perform the LQG algorithm.

This is done by grouping the schedules from Table 4.1 - 4.3 together and replacing the output with

their respective variable in memory. This overall schedule of the LQG controller with the memory

variables from Table 4.4 can be seen in Table 4.6.

Table 4.6 LQG Equation Scheduling Details

State A B Op. Result

1.a PA AT × T0,A
1.b A T1,B × T1,A
1.c B uk × T1,B
1.d A T0,B × PA, PB

2.a PA QB + PA

2.b QA PB + PB

2.c T1,A T1,B + x̂k, T1,B
3.a PA HT

k,i × T0,B
3.b Hk,i PB × T3,B
3.c Hk,i T0,B × S.A.1

3.d Hk,i xk × S.A.2

3.e Ri S.A.1 + Inv.

3.f zk,i S.A.2 − T2,B
3.g Inv. - ÷ T2,A
3.h T2,A T0,B × T3,A
4.a T3,A T2,B × T1,B
4.b T3,A T3,B × T0,B
4.c T3,A T3,B × T0,A
5.a x̂k T1,B + x̂k
5.b PA T0,B − PA

5.c T0,A PB − PB

6.a x̂k Klqr × uk
6.b uref Klqr × T1,A
6.c T1,A uk + uk

www.manaraa.com

36

Besides controlling the schedule for the algorithm, the FSM also controls the mode of the

multiply-accumulate tree (via each multiplier/adder’s input multiplexer), the BRAM’s input &

output multiplexers, and when to write to the output shift register.

4.2.5 Output Shift Register

Since the algorithm ends with am×1 vector addition, then the output vector uk will be produced

by the adders within the multiply-accumulate tree & RC (see Table 4.6, State 6.c). Since uk will be

distributed across all element-wise adders, each adder will produce m/Depth elements of uk. Thus,

an output shift register is utilized to return the results of the LQG computation to the software.

Each instance of this output shift register has m/Depth 32-bit registers and its own finite-state

machine (FSM) to control when to read, write, and shift the registers.

Shift Reg.
Add(i) AXI

Ready
Write FSM

Read
Max

(a)

Start

State 1Write = 1

No Yes

Count++;
Shift Reg.

Count ≤ Max

Yes
No

State 2

Ready = 1

Read

No

State 3

Ready = 0;
Count++;

Shift Reg.

Yes
Count = Max

Count = 0

No

Yes

State 0

(b)

Figure 4.5 The schematic (a) and state-machine flow chart(b) of the output shift register

hardware incorporated for each adder used to perform matrix addition (i.e.,

each adder within the multiply-accumulate tree and the first reduction circuit).

One important design feature is that the last register in the shift register, the Max signal, and

the Ready & Read flags are software configurable registers. In this way, the software is able to

view the output of the controller and maintain the its ability to configure the hardware without

re-synthesizing the design.

As seen in Fig. 4.5, the state machine evolves across four states. In State 0, it merely waits for

the LQG hardware to complete its computation and raise the Write flag. When Write is raised,

the machine transitions to State 1, where it continuously writes to the first 32-bit register in the

shift register, shifts the registers to the right, and increments Counter, which is used to keep track

www.manaraa.com

37

of how many values are currently within the shift register. Once Counter equals Max, the output

shift register goes to State 2, where it resets Counter and sets the Ready flag, which alerts the

software that the output is ready to be read. On the rising edge of the Read flag - a software

controlled variable - the software indicates that it has read the value within the last 32-bit shift

register and is ready for the next value. The FSM then goes to State 3, where it shifts in the next

32-bit output and either repeats the process, if there are more values to be read, or returns to its

initial state, to await for the hardware to write its next value.

4.3 Software Interface

Several software interfaces are present in this design to try to allow the user to modify the

controller’s parameters without re-synthesizing the hardware design. Additionally, all input and

output signals are routed through the CPU before being sent to the LQG computational hardware.

This is done so that the user can log the input to and output from the controller for troubleshooting

or for analysis the controller’s performance.

4.3.1 Software Configurable Registers

Many of the parameters for the Finite State Machine in Section 4.2.4 are controlled by and

accessible to the user via software configurable registers. In this design, these registers are au-

tomatically initialized via software, given values for the matrix dimensions (i.e., n, m, and p) as

well as the Depth of the multiply-accumulate tree. Additionally, the minimum sample rate for the

system (i.e., the amount of time between beginning and ending one iteration of the LQG algorithm)

is controlled by a software configurable register as well. A complete list of all software configurable

registers and their associated values can be found in the Appendix.

www.manaraa.com

38

4.3.2 BRAM Initialization

Since the BRAMs hold the parameters of the system (e.g., the state-space matrices), these

values must be encoded into the software via the user. The matrices are encoded as a floating point

array, where the matrix is stored row-wise in the array, as seen in Fig. 4.6.

𝐴 =

1.0000 2.0000 3.0000 8.0000
3.0000 5.0000 2.0000 1.0000
8.0000 3.0000 7.0000 0.0000
0.0000 1.0000 6.0000 9.0000

Figure 4.6 An example of how the user would encode a parameter matrix in software so

that it can be initialized into the FPGA’s BRAMs via the setBRAM function.

Once the matrices are encoded in their arrays, setBRAM can be called, which has three argu-

ments: a float array, an integer count, and an integer bounds, e.g., the array of floating point

matrix elements, a matrix identifier, and the number elements that should be written into the

BRAMs, respectively. The setBRAM function then uses software registers to coordinate the writing

of elements to memory.

4.3.3 Sensor Input Interface

To get the sensor values to the hardware, a function called transmit sensor data is called,

which iterates through an array of sensor values and sends them to BRAM SA. This is done by

using the similar to how the other BRAMs are loaded: a software configurable register connected

to the BRAM is loaded, another software configurable register that controls a the BRAM’s input

multiplexer is toggled to take the input from the software, and another software configurable register

is written, which enables the BRAM to write. Figure 4.7 shows the details of how the sensors values

are written to BRAM SA.

4.3.4 Controller Output Interface

The software must read uk once the LQG hardware writes uk to the output shift register (as

described in Section 4.2.5). This is done by checking a software configurable register which holds the

www.manaraa.com

39

Figure 4.7 A screen-shot of transmit sensor data: the C function which facilitates the

transition of sensor information from software to hardware’s BRAM SA.

Given the matrix t structure of sensorData, the software iterates through

each element in sensorData, writing it to a software configurable register,

setting its write address in BRAM SA, and sending a write command to

BRAM SA.

bit-wise AND of each output shift register’s Ready flag. Once this flag is raised, the software reads

the last shift register, stores this value in software, and sets the Read flag, so that the hardware

shifts the register to the next value. Figure 4.8 shows the details of how the output values are

captured from the output shift registers.

www.manaraa.com

40

Figure 4.8 A screen-shot of transmit sensor data: the C function which reads the LQG

controller’s output uk from each output shift registers (see Section 4.2.5).

www.manaraa.com

41

CHAPTER 5. ANALYSIS

This chapter analyzes the proposed design by calculating the resource utilization and minimum

sample rate, based on the number of states and depth of the multiply-accumulate tree. Several

software platforms are then targeted with the same LQG algorithm and their performance is com-

pared to varying scales of the HW/SW LQG’s architecture. Beyond the comparison to software,

a comparison of the proposed design against the performance and resource utilization of several

relevant, recent works is presented.

5.1 Targeted Hardware Platforms

5.1.1 Resource Utilization

Since this architecture was developed using Xilinx’s Vivado design suite, two FPGA platforms

were targeted: a Digilent Zybo development board with a ZYNQ XC7Z020 System-on-Chip (SoC)

and a Xilinx ZYNQ UltraScale+ ZCU106 evaluation platform with a XCZU7EV Multi-processor

SoC (MPSoC). These were chosen due to their difference in price and size, which allowed exploration

into resource, timing, and scale given a commonly used and a state-of-the-art research platforms.

The fully pipelined hardware for varying matrix sizes were synthesized and implemented in Vivado.

The resource utilization of ZYNQ-7020 and ZYNQ UltraScale+ MPSoC are given in Tables 5.1

and 5.2, respectively. Additionally, the percent of total resources used per FPGA is presented in

Fig. 5.1 and Fig. 5.2, for the ZYNQ 7020 and UltraScale+ MPSoC, respectively.

www.manaraa.com

42

Table 5.1 Hardware LQG Resource Utilization (Zynq - 7020)

System Size LUTs FFs BRAMs DSPs Max. fclk.

Depth # of × 53, 200 106, 400 140 220 MHz

2 4 12,725 21,174 9 26 132.98

3 8 15,747 24,251 17 42 135.12

4 16 21,015 30,347 33 74 131.77

5 32 29,935 42,588 65 138 116.50

Table 5.2 Hardware LQG Resource Utilization (ZYNQ UltraScale+ ZCU106)

System Size LUTs FFs BRAMs DSPs Max. fclk.

Depth # of × 230, 400 460, 800 312 1728 MHz

2 4 15,314 23,588 9 26 150.38

3 8 18,213 23,588 17 42 131.16

4 16 23,222 32,779 33 74 140.29

5 32 32,774 45,017 65 138 136.04

6 64 52,653 69,446 129 266 125.82

7 128 92,579 117,846 257 522 112.87

www.manaraa.com

43

Figure 5.1 The resource utilization, as a percentage of total on-chip resources, for varying

scales of the HW/SW LQG’s hardware architecture for a Xilinx ZYNQ 7020.

Note that the Depth of the multiply accumulate tree was chosen so that the

system was fully pipelined, i.e., the largest amount of hardware for the given

matrix dimension.

www.manaraa.com

44

Figure 5.2 The resource utilization, as a percentage of total on-chip resources, for varying

scales of the HW/SW LQG’s hardware architecture for a Xilinx ZYNQ Ultra-

Scale+ XCZU7EV MPSoC. Note that the Depth of the multiply accumulate

tree was chosen so that the system was fully pipelined, i.e., the largest amount

of hardware for the given matrix dimension.

www.manaraa.com

45

5.1.2 Control-loop Timing

The amount of time the hardware LQG controller takes to complete one iteration of its entire

algorithm was calculated to determine its minimum sample rate. This computation is highly

dependent on the latency produced by each of floating-point IP cores. Since this project was

designed using Xilinx’s Vivado 2018.2.2 design suite, Xilinx Floating-point v7.1 IP cores were used.

While these IP cores can be customized with varying latencies (at the cost of clock speed & resource

usage), this project targeted to have latencies of Lat+ = 12, Lat× = 9, and Lat÷ = 30 for the

addition/subtraction, multiplication, and reciprocal arithmetic units, respectively. Additionally, if a

reduction circuit is needed, then the pipeline depth increases by
log2n−Depth∑

k=1

2k, since each reduction

circuit produces a valid summation every 2k clock cycles, where k is the index of the reduction

circuit. With these latencies, the latency for the multiply-accumulate tree’s pipeline (LatPD) can

be determined for any given Depth & n via (5.1).

LatPD = Lat× + Lat+(log2n)

[
+

log2n−Depth∑
k=1

2k

]
(5.1)

Using (5.1) and Table 4.6, the number of clock cycles the LQG controller takes to complete

each stage of the LQG algorithm can be computed, as seen in Table 5.3.

Table 5.3 Hardware Iteration Time - Formulas

State Number of Clock Cycles

1 2n3+n2+nm
2Depth + P.D.

2 2n2+n
2Depth + Lat+

3 2n2+n
2Depth + 2(P.D.) +max{ n2

2Depth , (Lat+ + Lat÷)}
4 2n2+n

2Depth + Lat×

5 2n2+n
2Depth + Lat+

6 2mn+m
2Depth + P.D.+ Lat+

Using the computations from Table 5.3, the timing computations for varying system sizes and

pipeline depths was calculated and presented in Table 5.4.

www.manaraa.com

46

Table 5.4 Hardware Iteration Time - 100MHz

Depth Size (n = m = p)

4 8 16 32 64 128

1 10.25µs 37.1µs 201µs 1.41ms 10.8ms 85.0ms

2 8.81µs 26.4µs 114µs 737µs 5.47ms 42.7ms

3 - 21.0µs 74.7µs 399µs 2.81ms 21.5ms

4 - - 55.1µs 233µs 1.48ms 11.0ms

5 - - - 158µs 814µs 5.68ms

6 - - - - 493µs 3.03ms

7 - - - - - 1.71ms

Notice that time is not reported for when there are less matrix elements than multipliers. This

is done to simplify the memory address architecture and BRAM interface.

5.2 Software Comparison

Since parallelism is heavily leveraged in this hardware design, a valid comparison of the acceler-

ator’s performance (e.g., timing) is against a comparable software implementation. While FPGAs

execute more computations in parallel, they usually have a slower clock rate; therefore, while soft-

ware is more sequential, it performs tasks faster. Thus, to perform a fair comparison, the same

LQG algorithm is computed across multiple processing platforms with varying clock rates.

5.2.1 Targeted Software Platforms

Three different processors were available for comparison: a dual-core ARM Cortex-9, a quad-

core AMD FX-9800, and a quad-core Intel i7-4810MQ. Note that since this ARM processor was

embedded within a ZYNQ SoC fabric, its internal clock frequency could be adjusted between 50-

667MHz. The AMD FX-9800 has a base frequency of 2.70GHz, but a max frequency of 3.60GHz.

Similarly, the Intel i7-4810MQ has a base frequency of 2.80GHz, but a max frequency of 3.80GHz.

www.manaraa.com

47

5.2.2 Timing Comparison

To make the comparison as fair as possible, a C software implementation computes the same

formula as the hardware, i.e., the software also performs the SDKF algorithm, rather than the

traditional DKF algorithm. Note that the ARM processor executed the algorithm without an

operating system. The AMD and Intel processors were executed in Code Blocks application on

top of Windows 10. To get accurate timing measurements, the software started a timer, ran 1,000

complete iterations of the LQG controller, stopped the timer, then returned the difference of the

two timers. This procedure was carried out ten times for each matrix size. The mean and 99%-

confidence interval of the software computations are presented in Tables 5.5 and 5.6.

Table 5.5 Software LQG w/ SDKF Iteration Time on ARM Cortex-A9 Processor

Size Clock Rate

(n = m = p) 100MHz 333MHz 650MHz

4 782µs ± 0.758µs 234.3µs ± 0.432µs 120.1µs ± 0.182µs

8 4.178ms ± 1.01µs 1.253ms ± 0.393µs 642.9µs ± 0.262µs

16 28.41ms ± 5.03µs 8.522ms ± 1.77µs 4.370ms ± 0.634µs

32 228.5ms ± 25.8µs 68.55ms ± 1.96µs 35.15ms ± 0.978µs

64 1.845s ± 13.4µs 554.5ms ± 26.6µs 284.4ms ± 14.2µs

128 16.18s ± 15.1ms 4.893s ± 501µs 2.552s ± 167µs

Table 5.6 Software LQG w/ SDKF Iteration Time on AMD & Intel Processors

Size AMD FX-9800 Intel i7-4810MQ

(n = m = p) 2.7GHz 2.8GHz

4 16.94µs ± 2.66µs 8.587µs ± 0.711µs

8 59.64µs ± 5.05µs 45.17µs ± 1.23µs

16 354.3µs ± 8.37µs 275.0µs ± 2.55µs

32 2.397ms ± 20.4µs 2.074ms ± 28.0µs

64 18.83ms ± 97.0µs 15.69ms ± 123µs

128 175.3ms ± 1.37ms 125.5ms ± 764µs

As to be expected, when comparing the HW/SW LQG’s timing performance (see Table 5.4),

there is a timing improvement for nearly all matrix sizes across all processors. The only exception

www.manaraa.com

48

to this is for systems of size n = 4, where the Intel i7-4810MQ processor had a 0.02% faster speedup

than the HW/SW LQG controller. When compared to the AMD FX-9800 and the ARM Cortex-A9

(at 650MHz), the HW/SW LQG controller achieves a .79 and 14.5 factor speedup, respectively.

These modest speedups are likely due to the difference in clock rates and the lost parallelism in the

HW/SW LQG controller, due to low utilization of the multiply-accumulate tree’s pipeline.

When comparing the timing for n = 128, the HW/SW LQG controller achieves a 73x, 102x,

1390x speedup over the Intel i7, the AMD FX-9800, and the 650MHz ARM Cortex-A9, respec-

tively. While the increased parallelism and heavily leveraged pipeline can justify the performance

improvements achieved for the i7 and FX-9800 processors, it is not the only contributing factor

when comparing against the ARM Coretx-A9 processor. The key to this performance difference

is the ARM’s cache. A 32-bit floating-point, 128 × 128 matrix is 64KB of memory; however, the

ARM’s L1 cache is only 32KB (ARM). Thus, the there are never any cache hits, resulting in

constantly reading from either the L2 or off-chip memory, further escalating the time difference.

5.3 Related Work Comparison

To assess the methodology behind developing this HW/SW LQG controller, several recent works

will be analyzed. The performance (e.g., minimum sample rate), resources used, and architecture

scale will be compared to elaborate whether the proposed design would have been well-suited for

each implementation.

5.3.1 Methodology Analysis

The first work that will be compared was presented by Deliparaschos et al. (2017), where they

implement a 3rd-order LQG controller using Matlab’s HDL coder while studying sensor selection.

Table 5.7 shows the resource and timing analysis for their the fully-pipelined HW/SW LQG con-

troller of size n = 4 versus their reported results.

While the design presented by Deliparaschos et al. (2015) uses 3.1-3.8x less LUTs, 8.79-9.79x

less FFs, and 3x less BRAMs, they use 2.8x more DSPs and run 1.2-1.7x slower than the proposed

www.manaraa.com

49

Table 5.7 Hardware Resource Utilization and Timing - Methodology Analysis

FPGA Series n Max. fclk LUTs FFs DSPs BRAMs Min. Tsamp

ZYNQ-7020 4 112MHz 12,717 21,178 26 9 7.87µs

ZYNQ ZCU-106 4 150MHz 15,314 23,588 26 9 5.87µs

Virtex-6 3 25MHz 4,012 2,410 73 3 10µs

design. Should (Deliparaschos et al., 2017) have used an FPGA with an embedded CPU, they could

have sped up their design phase, as well as their overall architecture, if they had used the proposed

HW scalable, SW configurable LQG controller in their design. This validates our methodology in

that this architecture can be used as an IP core to allow users to implement this LQG algorithm

for their specific applications.

5.3.2 Application Analysis

The next comparison is against a hardware implementation of a DKF for image denoising using

a systolic array, as presented by Johnson et al. (2017). Their approach targets a 3rd-order system

with the design goals of low latency and high throughput. Their results, as well as the comperable

results for the proposed system, are presented in Table 5.8.

Table 5.8 Hardware Resource Utilization and Timing - Application Analysis

FPGA Series n Max. fclk LUTs FFs DSPs BRAMs Min. Tsamp

ZYNQ-7020 4 112MHz 12,717 21,178 26 9 7.87µs

ZYNQ ZCU-106 4 150MHz 15,314 23,588 26 9 5.87µs

Virtex-6 3 310MHz 4,438 2,821 91 81 122ns

While their architecture uses 2.9-3.5x less LUTs and 7.5-8.4x less FFs, their design is very DPS

and BRAM intensive for such a low-order system, using 3.5x and 9x more DSPs and BRAMs,

respectively. Though their design requires more DSPs and BRAMs, they achieve a much lower

sample rate than the proposed HW/SW LQG controller could achieve.

www.manaraa.com

50

This work was compared for multiple reasons, firstly to show that the proposed design may not

meet the performance requirements for every system; in this case, the HW/SW LQG controller

would be too slow. However, one benefit of the HW/SW codesign is its ability to reconfigure to

allow for a variety of systems to use its architecture. Should Johnson et al. (2017) wish to scale

their architecture for a 4th- or 5th-order system, their entire design would have to be retailored for

this system, which would be time-consuming.

5.3.3 Scaling Analysis

While the hardware architecture can scale upwards of n = 128 states, many systems can be

modeled using less states. As Hasan et al. (2019) report, the real-world model of the Brazilian

power grid, a system of size n = 7135, can be reduced down to a model of n = 100 with less 10−3

error. Similar work is presented by Bonotto et al. (2016), where they reduce a Krylov subspace

model from n = 2773 to n = 30 with less than 0.1% error.

The work presented by Kettner and Paolone (2017) use the SDKF algorithm to target an

unreduced three-phase network, i.e., n = 256. Their resource and timing analysis, as well as the

closest related performance metrics for the HW/SW LQG controller, are presented in Table 5.9.

Table 5.9 Hardware Resource Utilization and Timing - Scaling Analysis

FPGA Series n Max. fclk LUTs FFs DSPs BRAMs Min. Tsamp

ZYNQ ZCU-106 128 112MHz 92,579 117,846 522 257 1.52ms

Kintex-7 256 - 43,166 49,088 357 262 35ms

Note that, due to the limited number of BRAMs available on the ZYNQ UltraScale+ ZCU106,

the closest fully-pipelined HW/SW LQG architecture for comparison was Depth = 7 and n =

128. This is due to (Kettner and Paolone, 2017) allowing for certain simplifying assumptions, i.e.,

A = In×n and B = 0m×n. Beyond these two matrices they did not need to store, they were also

only performing state-estimation, not performing the full LQG control algorithm, so they did not

need to store the Klqr matrix as well. However, if there was a ZYNQ FPGA with enough BRAMs

www.manaraa.com

51

available, it is estimated that a comparable hardware architecture, e.g., n = 256, Depth = 6, would

require 897 BRAMs and have a minimum sample rate of 22.2ms at 100MHz.

5.3.4 HW/SW Codesign Analysis

The final related work comparison will be against a HW/SW Codesigned LQR controller, as

presented by Zhang et al. (2015). Since the LQR algorithm is incorporated within the LQG, it can

be reasonably assumed that the LQG algorithm will likely utilize more resources and time, since it

performs more computations. As seen in Table 5.10, this assumption is reasonably accurate.

Table 5.10 Hardware Resource Utilization and Timing - HW/SW Codesign Analysis

FPGA Series n Max. fclk LUTs FFs DSPs BRAMs Min. Tsamp

ZYNQ-7020 32 112MHz 29,896 42,620 138 65 141µs

ZYNQ ZCU-106 32 125MHz 32,774 45,017 138 65 126µs

ZYNQ-7020 32 122MHz 42,138 48,143 128 66 1.57µs

Note that since Zhang et al. (2015) are also using a multiply-accumulate structure for their

matrix computations, the number of DSPs and BRAMs are nearly equivalent, with the exception

of 8 more DSPs for the floating-point inversion, 2 more DSPs for the scalar-adder, and 1 more

BRAM for the BRAM SA. While the LQG architecture uses more DSPs and BRAMs, it uses less

LUTs and FFs, likely due to the LQG architectures simplistic HW/SW interface.

The biggest difference between the two designs is the sample rate. Note that the LQG controller

is nearly 100x slower than the LQR. This makes sense, due to the added computations from

the SDKF causing the multiply-accumulate tree’s pipeline to fill and drain. Despite this timing

difference, this comparison again validates two key premises to this methodology: (1) while this

LQG controller is generalized for any system, it may not suite all systems and (2) this HW/SW

LQG controller could replace the presented HW/SW LQR controller in any application where the

increase in sample rate would not impact the system.

www.manaraa.com

52

CHAPTER 6. RESULTS AND DISCUSSION

The final chapter summarizes the performance, i.e., timing and resource utilization, of the

proposed HW scalable, SW configurable LQG controller. Additionally, a discussion of the proposed

methodology will be presented. Lastly, future work will be highlighted prior to concluding this work.

6.1 Performance Summary

6.1.1 Resource Summary

To achieve greater performance, the multiply-accumulate tree can scale to achieve further par-

allelism from the matrix computations. The amount of resources needed for a given architecture

scale are presented in Fig. 5.1 & Fig. 5.2. Two Xilinx FPGAs were selected for place & route

calculations of the controller: a modest ZYNQ 7020 and the state-of-the-art ZYNQ UltraScale+

XCZU7EV MPSoC. For the ZYNQ 7020, the scale of the architecture was limited by the number

of DSPs; for the UltraScale+ MPSoC, it was the BRAMs. The DSPs and BRAMs limit the scale

of the design. The DSPs are utilized for floating point multipliers & adders: for each increase

in Depth, the number of DSPs doubles. Similarly, the number of BRAMs also doubles for each

increase in Depth; however, this rate of increase changes after Depth = 7, due to needing more

than one 32KB BRAM for each instance of BRAM A and BRAM B.

6.1.2 Timing Summary

The minimum sample rate for the HW/SW LQG controller was calculated for varying system

sizes and architecture depths. For a comparison, the same LQG algorithm was tested on several

software processors: an ARM Cortex-A9, an AMD FX-9800, and an Intel i7-4810MQ. Comparing

the results of the HW/SW architecture’s timing (Table 5.4) against the software’s timing (Table

5.5 & 5.6), it can be seen that there are modest performance increases for lower-order systems,

www.manaraa.com

53

but with major increases for larger systems, particularly when compared with the ARM processor.

These were a result of the leveraged parallelism as well as the low-read latency of the HW/SW

LQG architecture. For the ARM Cortex-A9 processor, the size of its L1 cache made a substantial

difference, since the matrices were so large they resulted in constant cache misses.

6.2 Methodology Discussion

This work sought to develop an open-source hardware scalable, software configurable LQG con-

troller for closing the gap between LQG theory and its implementation. Due to its scalable hardware

accelerated architecture and on-the-fly software configurable interface, the proposed HW/SW LQG

controller is an ideal candidate for researchers to incorporate into their application specific designs.

As demonstrated in Section 5.3, there are applications where this HW/SW LQG controller could

be leveraged as an IP core to decrease development time and architecture flexibility. That be-

ing said, this HW/SW LQG architecture may not be well suited to all applications, since many

system-specific simplifying assumptions were not made.

6.3 Future Work

While this architecture has been designed and implemented, it has not been thoroughly tested,

due to the scaling architectures large design space. Currently, the only architecture that has been

tested on a physical system is Depth = 1 and n = 4. While most of the work has been done for

allowing the architecture to scale, it still needs to be tested before it should be applied to any

system.

Currently, this design is also limited to being used on Xilinx devices, since it heavily leveraged

Xilinx’s Floating Point Operator (v7.1) and Block Memory Generator (v8.4) IP core libraries.

Future work could be to transition away from these vendor libraries towards open-sourced libraries,

to allow for all types of FPGAs to use this design.

www.manaraa.com

54

Lastly, a goal of mine has been to incorporate this controller onto a quad-rotor Unmanned

Aerial System (UAS) as an advanced case study. ISU’s MicroCART senior design project would

be an ideal candidate for implementing this controller, primarily due to its on-board FPGA.

6.4 Conclusion

This work sought to develop an open-source hardware scalable, software configurable LQG

controller. This controller is meant to be used as an IP-core; this project is intended to mimic

HLS designs in that it allows the user to incorporate this hardware accelerated LQG computa-

tional architecture into their design with minimal effort. This thesis outlines the details of the

LQG algorithm: the LQR control-law and the SDKF state-estimator. A low-level overview of this

controller’s hardware architecture and software interface are given, as are the resource and timing

analysis. Comparing this architecture’s timing against a pure software implementation, modest

performance improvements are achieved for low-order systems, with performance improvements

increasing as the system size increases. When comparing the performance of related works versus

the proposed design, it can be argued that the overall goal of creating an IP-core is validated, since

many of the related designs could substitute the proposed controller and achieve similar results.

http://sdmay20-50.sd.ece.iastate.edu/

www.manaraa.com

55

Bibliography

Akgün, G., u. H. Khan, H., Elshimy, M. A., and Göhringer, D. (2018). Dynamic tunable and
reconfigurable hardware controller with ekf-based state reconstruction through fpga-in the loop.
In 2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pages
1–8.

Al-Saaty, N. N., Algreer, M., and Armstrong, M. (2017). Hardware/software co-design techniques
for compass search self-tuning pid controller in dc drive applications. In 2017 IEEE 26th Inter-
national Symposium on Industrial Electronics (ISIE), pages 490–495.

ARM. Cortex-a9 technical reference manual. http://infocenter.arm.com/help/topic/com.

arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf. Last accessed on Nov. 2nd, 2019.

Babu, K. S. and Detroja, K. (2019). Inverse free kalman filter using approximate inverse of diago-
nally dominant matrices. IEEE Control Systems Letters, 3(1):120–125.

Balasch, J., Beckers, A., Božilov, D., Roy, S. S., Turan, F., and Verbauwhede, I. (2018). Teaching
hw/sw codesign with a zynq arm/fpga soc. In 2018 12th European Workshop on Microelectronics
Education (EWME), pages 63–66.

Benkhoud, K., Bouallègue, S., and Ayadi, M. (2017). Rapid control prototyping of a quad-tilt-
wing unmanned aerial vehicle. In 2017 International Conference on Control, Automation and
Diagnosis (ICCAD), pages 423–428.

Bonotto, M., Bettini, P., and Cenedese, A. (2016). Model order reduction of large-scale state-space
models in fusion machines via krylov methods. In 2016 IEEE Conference on Electromagnetic
Field Computation (CEFC), pages 1–1.

Brown, R. G. and Hwang, P. Y. C. (2012). Introduction to Random Signals and Applied Kalman
Filtering with MATLAB Exercises. John Wiley & Sons, Inc., 4th edition. ISBN-13 978-0-470-
60969-9.

Chen, C. (1999). Oxford University Press, Inc., 3rd edition. ISBN-13 978-0-19-511777-6.

Cupelli, M., de Paz Carro, M., and Monti, A. (2015). Hardware in the loop implementation of a
disturbance based control in mvdc grids. In 2015 IEEE Power Energy Society General Meeting,
pages 1–5.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_trm.pdf

www.manaraa.com

56

Deliparaschos, K. M., Michail, K., Tzafestas, S. G., and Zolotas, A. C. (2015). A model-based
embedded control hardware/software co-design approach for optimized sensor selection of indus-
trial systems. In 2015 23rd Mediterranean Conference on Control and Automation (MED), pages
889–894.

Deliparaschos, K. M., Michail, K., and Zolotas, A. (2017). On the issue of lqg embedded control re-
alization in a maglev system. In 2017 25th Mediterranean Conference on Control and Automation
(MED), pages 1379–1384.

Devasia, S., Eleftheriou, E., and Moheimani, S. O. R. (2007). A survey of control issues in nanopo-
sitioning. IEEE Transactions on Control Systems Technology, 15(5):802–823.

Ding, D., Han, Q., Wang, Z., and Ge, X. (2019). A survey on model-based distributed control
and filtering for industrial cyber-physical systems. IEEE Transactions on Industrial Informatics,
15(5):2483–2499.

Eide, R. (2011). Lqg control design for balancing an inverted pendulum mobile robot. Intelligent
Control and Automation, 02:160–166.

Šetka, V., Čečil, R., and Schlegel, M. (2017). Triple inverted pendulum system implementation using
a new arm/fpga control platform. In 2017 18th International Carpathian Control Conference
(ICCC), pages 321–326.

Feist, T. (Jun. 22, 2012). Vivado design suite. https://www.xilinx.com/support/

documentation/white_papers/wp416-Vivado-Design-Suite.pdf. Last accessed on Oct 23,
2019.

Fonseca, J. V., Oliveira, R. C. L., Abreu, J. A. P., Ferreira, E., and Machado, M. (2013). Kalman
filter embedded in fpga to improve tracking performance in ballistic rockets. In 2013 UKSim
15th International Conference on Computer Modelling and Simulation, pages 606–610.

Garbergs, B. and Sohlberg, B. (1996). Specialised hardware for state space control of a dynamic
process. In Proceedings of Digital Processing Applications (TENCON ’96), volume 2, pages
895–899 vol.2.

Garbergs, B. and Sohlberg, B. (1998). Implementation of a state space controller in a
fpga. In MELECON ’98. 9th Mediterranean Electrotechnical Conference. Proceedings (Cat.
No.98CH36056), volume 1, pages 566–569 vol.1.

Hasan, S., Fony, A. M., and Uddin, M. M. (2019). Reduced model based feedback stabilization of
large-scale sparse power system model. In 2019 International Conference on Electrical, Computer
and Communication Engineering (ECCE), pages 1–6.

https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf

www.manaraa.com

57

Ibañez, C., Ocampo-Martinez, C., and Gonzalez, B. (2017). Embedded optimization-based con-
trollers for industrial processes. In 2017 IEEE 3rd Colombian Conference on Automatic Control
(CCAC), pages 1–6.

Irturk, A., Mirzaei, S., and Kastner, R. (2009). An efficient fpga implementation of scalable matrix
inversion core using qr decomposition.

Johnson, B., Thomas, N., and Rani, J. S. (2017). An fpga based high throughput discrete kalman
filter architecture for real-time image denoising. In 2017 30th International Conference on VLSI
Design and 2017 16th International Conference on Embedded Systems (VLSID), pages 55–60.

Kettner, A. M. and Paolone, M. (2017). Sequential discrete kalman filter for real-time state es-
timation in power distribution systems: Theory and implementation. IEEE Transactions on
Instrumentation and Measurement, 66(9):2358–2370.

Kozák, . (2012). Advanced control engineering methods in modern technological applications. In
Proceedings of the 13th International Carpathian Control Conference (ICCC), pages 392–397.

Kumar, G. A., Subbareddy, T. V., Reddy, B. M., Raju, N., and Elamaran, V. (2014). An approach
to design a matrix inversion hardware module using fpga. In 2014 International Conference on
Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pages
87–90.

Kumar, R., Cano, J., Brankovicy, A., Pavlouz, D., Stavrouz, K., Gibertx, E., Mart́ınez, A., and
González, A. (2017). Hw/sw co-designed processors: Challenges, design choices and a simulation
infrastructure for evaluation. In 2017 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 185–194.

Lahti, S., Sjövall, P., Vanne, J., and Hämäläinen, T. D. (2019). Are we there yet? a study on
the state of high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38(5):898–911.

Lee, E. A., A., S., and Seshia, editors (2011). Introduction to Embedded Systems - A Cyber Physical
Systems Approach. Lulu, 2nd edition. ISBN-13 978-1312427402.

Lee, S., Kang, J., Choi, S. S., and Lim, M. T. (2018). Design of ptp tc/slave over seamless
redundancy network for power utility automation. IEEE Transactions on Instrumentation and
Measurement, 67(7):1617–1625.

Liao, J., Jost, M., Schaffner, M., Magno, M., Korb, M., Benini, L., Tebbenjohanns, F., Reimann,
R., Jain, V., Gross, M., Militaru, A., Frimmer, M., and Novotny, L. (2019). Fpga implemen-
tation of a kalman-based motion estimator for levitated nanoparticles. IEEE Transactions on
Instrumentation and Measurement, 68(7):2374–2386.

www.manaraa.com

58

Liu, L., Leonhardt, S., and Misgeld, B. J. E. (2018). Experimental validation of a torque-controlled
variable stiffness actuator tuned by gain scheduling. IEEE/ASME Transactions on Mechatronics,
23(5):2109–2120.

Mathworks. Control system toolbox. https://www.mathworks.com/products/control.html.
Last accessed on Oct 23, 2019.

Mathworks. Hdl coder. https://www.mathworks.com/products/hdl-coder.html. Last accessed
on Oct 23, 2019.

Mathworks. Simulink for hdl code generation and verification. https://www.mathworks.com/

solutions/hdl-code-generation-verification.html. Last accessed on Oct 23, 2019.

Mills, A., Jones, P. H., and Zambreno, J. (2016). Parameterizable fpga-based kalman filter co-
processor using piecewise affine modeling. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 139–147.

Monmasson, E. and Cirstea, M. (2013). Guest editorial special section on industrial control appli-
cations of fpgas. IEEE Transactions on Industrial Informatics, 9(3):1250–1252.

Monmasson, E., Idkhajine, L., and Naouar, M. W. (2011). Fpga-based controllers. IEEE Industrial
Electronics Magazine, 5(1):14–26.

Nane, R., Sima, V., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y. T., Hsiao, H., Brown,
S., Ferrandi, F., Anderson, J., and Bertels, K. (2016). A survey and evaluation of fpga high-
level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(10):1591–1604.

NationalInstruments. Compare the labview 2019 fpga module and the labview nxg
fpga module. https://www.ni.com/en-us/shop/electronic-test-instrumentation/

add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/

compare-labview-fpga-module.html. Last accessed on Oct 23, 2019.

NationalInstruments. What is the labview fpga module. https:

//www.ni.com/en-us/shop/electronic-test-instrumentation/

add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module.

html. Last accessed on Oct 23, 2019.

Nazir, M. S., Aqil, M., Mustafa, A., Khan, A. H., and Shams, F. (2015). Real-time brain activation
detection by fpga implemented kalman filter. In 2015 15th International Conference on Control,
Automation and Systems (ICCAS), pages 432–435.

Nestorović, T. and Oveisi, A. (2018). Advanced disturbance rejection control of smart flexible
structures. In 2018 7th International Conference on Systems and Control (ICSC), pages 224–
229.

https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/solutions/hdl-code-generation-verification.html
https://www.mathworks.com/solutions/hdl-code-generation-verification.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/compare-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/compare-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/compare-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module.html
https://www.ni.com/en-us/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module.html

www.manaraa.com

59

Otaga, K. (1987). Discrete-Time Control Systems. Prentice-Hall, Inc. ISBN 0-13-216102-8.

Phillips, C. L., Nagle, T., and Chakrabortty, A. (2015). Digital Control System Analysis & Design.
Pearson Education Limited, 4th edition. ISBN-13 978-1-292-06122-1.

Phuong, T. T., Mitsantisuk, C., Ohishi, K., and Sazawa, M. (2010). Fpga-based wideband force
sensing with kalman-filter-based disturbance observer. In IECON 2010 - 36th Annual Conference
on IEEE Industrial Electronics Society, pages 1269–1274.

Priewasser, R., Agostinelli, M., Unterrieder, C., Marsili, S., and Huemer, M. (2014). Modeling,
control, and implementation of dc–dc converters for variable frequency operation. IEEE Trans-
actions on Power Electronics, 29(1):287–301.

Rodrigues da Silva, R., Teixeira, E. L. S., Murilo, A., and Dias Santos, M. M. (2017). A hardware-
in-the loop platform for designing and testing of electric power assisted steering. In IECON 2017
- 43rd Annual Conference of the IEEE Industrial Electronics Society, pages 5113–5118.

Santos, L. C., Atoche, A. C., Castilloy, J. V., Gandaraz, O. L., Alvarez, R. C., and Aguilar, J. O.
(2015). An improved hardware design for matrix inverse based on systolic array qr decomposition
and piecewise polynomial approximation. In 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–6.

Soh, J. and Wu, X. (2017). An fpga-based unscented kalman filter for system-on-chip applications.
IEEE Transactions on Circuits and Systems II: Express Briefs, 64(4):447–451.

Sumam, M. J. and Shiny, G. (2017). A rapid development technique for prototype fpga controllers.
In 2017 International Conference on Inventive Systems and Control (ICISC), pages 1–5.

Wanli, Z., Guoxin, L., and Lirong, W. (2014). Research on the control method of inverted pendulum
based on kalman filter. In 2014 IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing, pages 520–523.

Xie, H., Wen, Y., Shen, X., Zhang, H., and Sun, L. (2019). High-speed afm imaging of nanoposition-
ing stages using h∞ and iterative learning control. IEEE Transactions on Industrial Electronics,
pages 1–1.

Xilinx. Vivado Design Suite User Guide. Last accessed on Oct 23, 2019.

Xilinx. Vivado high-level synthesis. [https://www.xilinx.com/products/design-tools/

vivado/integration/esl-design.html. Last accessed on Oct 23, 2019.

Xu, Y., Li, D., Xi, Y., Lan, J., and Jiang, T. (2018). An improved predictive controller on the fpga
by hardware matrix inversion. IEEE Transactions on Industrial Electronics, 65(9):7395–7405.

[https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
[https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

www.manaraa.com

60

Yat Tin Lai, Bigdeli, A., and Biglari-Abhari, M. (2004). An optimised systolic array-based matrix
inversion for rapid prototyping of kalman filters in fpga’s. In 2004 12th European Signal Processing
Conference, pages 2035–2038.

Zhang, P., Mills, A., Zambreno, J., and Jones, P. H. (2015). A software configurable and parallelized
coprocessor architecture for lqr control. In 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–8.

Zhang, P., Zambreno, J., and Jones, P. H. (2017). An embedded scalable linear model predic-
tive hardware-based controller using admm. In 2017 IEEE 28th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 176–183.

Zhuo, L., Morris, G. R., and Prasanna, V. K. (2005). Designing scalable fpga-based reduction
circuits using pipelined floating-point cores. In 19th IEEE International Parallel and Distributed
Processing Symposium, pages 8 pp.–.

www.manaraa.com

61

APPENDIX. SOFTWARE CONFIGURABLE REGISTER

COMPUTATIONS

This appendix presents the values of the software configurable registers that are automatically

calculated from the user specified #define statements for the variables of n, m, p, and Depth. Note

that the user will also need to update several hardware specific variables (i.e., AddLat, MultLat,

etc.) which the user will have specified in hardware prior to synthesizing the design.

Hardware Specific Variables

#de f i n e AddLat 12 // Latency o f the Float ing−Point Adder

#de f i n e MultLat 9 // Latency o f the Float ing−Point Mu l t i p l i e r

#de f i n e InvLat 30 // Latency o f the Float ing−Point Inv e r t e r

#de f i n e ReadLat 1 // Latency o f the BRAM when performing a read

unsigned in t Pipel ineDepth = MultLat + AddLat∗(Depth + MaxCount) + (n−MaxCount)∗ReadLat ;

unsigned in t MaxGlobalCount = 0x000F4240 ; // 10ms

unsigned in t NumMult = 1 << Depth ;

unsigned in t NumAdd = (1<<Depth)−1;

unsigned in t MaxReadC = ((n − 1)/NumMult) ;

unsigned in t MaxReadD = (((n∗n) − 1)/NumMult) ;

unsigned in t n minus 1 = (n−1);

unsigned in t p minus 1 = (p−1);

unsigned in t Add nby1 = (n/NumMult) ;

unsigned in t nbyn = (((n∗n)−1)/NumMult) ;

unsigned in t nby1 = ((n−1)/NumMult) ;

unsigned in t mbyn = (((n∗m)−1)/NumMult) ;

unsigned in t nby1 = ((m−1)/NumMult) ;

unsigned in t nbyn e1 = (((n∗n)−1)/(1<<(Depth+1))) ;

unsigned in t nby1 e1 = ((n−1)/(1<<(Depth+1))) ;

unsigned in t mby1 e1 = ((m−1)/(1<<(Depth+1))) ;

unsigned in t RedNum = ((n/NumMult)−((n−1)/NumMult)) ;

BRAM Base Addresses

// Base Addresses in BRAM A

#de f i n e Mat A BaseAddr 0

#de f i n e Mat PA BaseAddr ((n∗n)/NumMult)

www.manaraa.com

62

#de f i n e Temp0A BaseAddr 2∗((n∗n)/NumMult)

#de f i n e Temp1A BaseAddr 3∗((n∗n)/NumMult)

#de f i n e Temp2A BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult)

#de f i n e Temp3A BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1

#de f i n e Mat HA BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1 + n

#de f i n e Mat QA BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗p)/NumMult)

#de f i n e Mat B BaseAddr 4∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗p)/NumMult)

#de f i n e Vec x BaseAddr 4∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗m)/NumMult) + ((n∗p)/NumMult)

#de f i n e Vec uRef BaseAddr 4∗((n∗n)/NumMult) + 2∗(n/NumMult) + 1 + n + ((n∗m)/NumMult) + ((n∗p)/NumMult)

// Base Addresses in BRAM B

#de f i n e Mat AT BaseAddr 0

#de f i n e Mat PB BaseAddr ((n∗n)/NumMult)

#de f i n e Temp0B BaseAddr 2∗((n∗n)/NumMult)

#de f i n e Temp1B BaseAddr 3∗((n∗n)/NumMult)

#de f i n e Temp2B BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult)

#de f i n e Temp3B BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1

#de f i n e Mat HB BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1 + n

#de f i n e Mat QB BaseAddr 3∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗p)/NumMult)

#de f i n e Mat K lqr BaseAddr 4∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗p)/NumMult)

#de f i n e Vec u BaseAddr 4∗((n∗n)/NumMult) + (n/NumMult) + 1 + n + ((n∗m)/NumMult) + ((n∗p)/NumMult)

Stage 1 Variables

// Stage 1 o f LQG Algorithm

unsigned in t Stage1 1 Star tWr i te = Pipel ineDepth ;

unsigned in t Stage1 1 End = Pipel ineDepth + (((n−1)/NumMult)+1)∗n ;

unsigned in t Stage1 2 StartRead = (n∗n∗n)/NumMult ;

unsigned in t Stage1 2 Star tWr i te = Pipel ineDepth + ((n∗n∗n)/NumMult) ;

unsigned in t Stage1 2 StopWrite = Pipel ineDepth + ((n∗n∗n)/NumMult) + ((n∗n)/NumMult) ;

unsigned in t Stage1 3 StartRead = ((n∗n∗n)/NumMult) + ((n∗n)/NumMult) ;

unsigned in t Stage1 3 StopRead = ((n∗n∗n)/NumMult) + ((n∗n)/NumMult) + ((n∗m)/NumMult) ;

unsigned in t Stage1 3 StopWrite = Pipel ineDepth + ((n∗n∗n)/NumMult) + ((n∗n)/NumMult) + ((n∗m)/NumMult) ;

unsigned in t Stage1 5 StopRead = 2∗ (((n∗n∗n)/NumMult)) + ((n∗n)/NumMult) + ((n∗m)/NumMult) + ReadLat ;

unsigned in t Stage1 5 Star tWr i te = Pipel ineDepth + ((n∗n∗n)/NumMult) + ((n∗n)/NumMult) + ((n∗m)/NumMult) ;

unsigned in t Stage1 5 StopWrite = Pipel ineDepth + (2∗ ((n∗n∗n)/NumMult)) + ((n∗n)/NumMult) +

((n∗m)/NumMult) ;

unsigned in t Stage1 4 StopRead = Pipel ineDepth + (((n−1)/NumMult)+1)∗n + ((n∗n∗n)/NumMult) + ReadLat ;

unsigned in t Stage1 4 Star tWr i te = 2∗Pipel ineDepth + (((n−1)/NumMult)+1)∗n ;

unsigned in t Stage1 4 StopWrite = 2∗Pipel ineDepth + (((n−1)/NumMult)+1)∗n + ((n∗n∗n)/NumMult) ;

Stage 2 Variables

// Stage 2 o f LQG

unsigned in t Stage2 1 Star tWr i te = AddLat + ReadLat ;

unsigned in t Stage2 2 StartRead = ((n∗n)/NumMult) ;

www.manaraa.com

63

unsigned in t Stage2 2 Star tWr i te = ((n∗n)/NumMult) + AddLat + ReadLat ;

unsigned in t Stage2 3 StartRead = 2∗((n∗n)/NumMult) ;

unsigned in t Stage2 3 StopRead = 2∗((n∗n)/NumMult) + (n/NumMult) + ReadLat ;

unsigned in t Stage2 3 Star tWr i te = 2∗((n∗n)/NumMult) + AddLat + ReadLat ;

unsigned in t Stage2 3 StopWrite = 2∗((n∗n)/NumMult) + (n/NumMult) + AddLat + ReadLat ;

Stage 3 Variables

// Stage 3 o f LQG

unsigned in t Stage3 1 Star tWr i te = Pipel ineDepth ;

unsigned in t Stage3 2 StartRead = ((n∗n)/NumMult) ;

unsigned in t Stage3 2 StopRead = 2∗((n∗n)/NumMult) + ReadLat ;

unsigned in t Stage3 2 Star tWr i te = ((n∗n)/NumMult) + Pipel ineDepth ;

unsigned in t Stage3 2 StopWrite = 2∗((n∗n)/NumMult) + Pipel ineDepth ;

// i f Pipel ineDepth + (n∗∗2)/NumMult > 2∗(n∗∗2)/NumMult , then Stage3 3 StartRead should be

// Stage3 2 Star tWr i te

unsigned in t Stage3 3 StartRead = Stage3 2 Star tWr i te ;

unsigned in t Stage3 3 StartSA = Stage3 3 StartRead + Pipel ineDepth − ReadLat ;

unsigned in t S tage3 3 Sta r t Inv = Stage3 3 StartRead + Pipel ineDepth + AddLat ;

unsigned in t Stage3 3 Star tWr i te = Stage3 3 StartRead + Pipel ineDepth + AddLat + InvLat ;

unsigned in t Stage3 3 StopWrite = Stage3 3 StartRead + Pipel ineDepth + AddLat + InvLat + ReadLat ;

unsigned in t Stage3 4 StartRead = Stage3 3 StartRead + (n/NumMult) ;

unsigned in t Stage3 4 StopRead = Stage3 3 StartRead + 2∗(n/NumMult) ;

unsigned in t Stage3 4 StartSA = Stage3 3 StartRead + (n/NumMult) + Pipel ineDepth − ReadLat ;

unsigned in t Stage3 4 Star tWr i te = Stage3 3 StartRead + (n/NumMult) + Pipel ineDepth + AddLat ;

unsigned in t Stage3 4 StopWrite = Stage3 3 StartRead + (n/NumMult) + Pipel ineDepth + AddLat + ReadLat ;

unsigned in t Stage3 5 StopRead = Stage3 3 StartRead + Pipel ineDepth + AddLat + InvLat + ReadLat + n ;

unsigned in t Stage3 5 Star tWr i te = Stage3 3 StartRead + Pipel ineDepth + AddLat + InvLat + 2∗ReadLat +

MultLat ;

unsigned in t Stage3 5 StopWrite = Stage3 3 StartRead + Pipel ineDepth + AddLat + InvLat + 2∗ReadLat +

MultLat + n ;

Stage 4 Variables

// Stage 4 o f LQG

unsigned in t Stage4 1 Star tWr i te = MultLat + ReadLat ;

unsigned in t Stage4 2 StartRead = (n/NumMult) ;

unsigned in t Stage4 2 Star tWr i te = MultLat + ReadLat + (n/NumMult) ;

unsigned in t Stage4 3 StartRead = (n/NumMult) + ((n∗n)/NumMult) ;

unsigned in t Stage4 3 StopRead = (n/NumMult) + 2∗((n∗n)/NumMult) ;

unsigned in t Stage4 3 Star tWr i te = (n/NumMult) + ((n∗n)/NumMult) + MultLat + ReadLat ;

unsigned in t Stage4 3 StopWrite = (n/NumMult) + 2∗((n∗n)/NumMult) + MultLat + ReadLat ;

www.manaraa.com

64

Stage 5 Variables

// Stage 5 o f LQG

unsigned in t Stage5 1 Star tWr i te = AddLat + ReadLat ;

unsigned in t Stage5 2 StartRead = (n/NumMult) ;

unsigned in t Stage5 2 Star tWr i te = (n/NumMult) + AddLat + ReadLat ;

unsigned in t Stage5 3 StartRead = (n/NumMult) + ((n∗n)/NumMult) ;

unsigned in t Stage5 3 StopRead = (n/NumMult) + 2∗((n∗n)/NumMult) ;

unsigned in t Stage5 3 Star tWr i te = (n/NumMult) + ((n∗n)/NumMult) + AddLat + ReadLat ;

unsigned in t Stage5 3 StopWrite = (n/NumMult) + 2∗((n∗n)/NumMult) + AddLat + ReadLat ;

Stage 6 Variables

// Stage 6 o f LQG

unsigned in t Stage6 1 Star tWr i te = Pipel ineDepth ;

unsigned in t Stage6 2 StartRead = ((m∗n)/NumMult) ;

unsigned in t Stage6 2 StopRead = (2∗ ((m∗n)/NumMult)) + ReadLat ;

unsigned in t Stage6 2 Star tWr i te = ((m∗n)/NumMult) + Pipel ineDepth ;

unsigned in t Stage6 2 StopWrite = (2∗ ((m∗n)/NumMult)) + Pipel ineDepth ;

unsigned in t Stage6 3 StopRead = (2∗ ((m∗n)/NumMult)) + Pipel ineDepth + ReadLat + (m/NumMult) ;

unsigned in t Stage6 3 Star tWr i te = (2∗ ((m∗n)/NumMult)) + Pipel ineDepth + ReadLat + AddLat ;

unsigned in t Stage6 3 StopWrite = (2∗ ((m∗n)/NumMult)) + Pipel ineDepth + ReadLat + AddLat + (m/NumMult) ;

	A hardware scalable, software configurable LQG controller using a sequential discrete Kalman filter
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2. RELATED WORK
	2.1 LQG Relevance and Industrial FPGA Controllers
	2.1.1 Relevance of Kalman Filters and LQG Controllers
	2.1.2 Embedding Control Algorithms in FPGAs

	2.2 Hardware Accelerated Architectures
	2.2.1 Matrix Inversion
	2.2.2 Kalman Filters
	2.2.3 LQG Controllers

	2.3 HW/SW Codesigns
	2.4 High-Level Synthesis Tools
	2.4.1 High-Level Synthesis Overview
	2.4.2 Xilinx's Vivado HLS
	2.4.3 Mathlab's HDL Coder
	2.4.4 LabView's FPGA Tool Suite

	3. LQG ALGORITHM
	3.1 State-Space Modeling
	3.2 Linear Quadratic Regulator (LQR)
	3.3 Kalman Filter Algorithms
	3.3.1 Kalman Filter Model
	3.3.2 Prediction Stage
	3.3.3 Estimation Stage

	4. ARCHITECTURE
	4.1 Algorithm's Scheduling
	4.1.1 SDKF's Prediction Stage
	4.1.2 SDKF's Estimation Stage
	4.1.3 LQR's Computation

	4.2 Hardware Components
	4.2.1 Multiply Accumulate Tree
	4.2.2 Scalar-Adder & Inverter
	4.2.3 Memory Management Architecture
	4.2.4 Finite State Machine
	4.2.5 Output Shift Register

	4.3 Software Interface
	4.3.1 Software Configurable Registers
	4.3.2 BRAM Initialization
	4.3.3 Sensor Input Interface
	4.3.4 Controller Output Interface

	5. ANALYSIS
	5.1 Targeted Hardware Platforms
	5.1.1 Resource Utilization
	5.1.2 Control-loop Timing

	5.2 Software Comparison
	5.2.1 Targeted Software Platforms
	5.2.2 Timing Comparison

	5.3 Related Work Comparison
	5.3.1 Methodology Analysis
	5.3.2 Application Analysis
	5.3.3 Scaling Analysis
	5.3.4 HW/SW Codesign Analysis

	6. RESULTS AND DISCUSSION
	6.1 Performance Summary
	6.1.1 Resource Summary
	6.1.2 Timing Summary

	6.2 Methodology Discussion
	6.3 Future Work
	6.4 Conclusion

	. SOFTWARE CONFIGURABLE REGISTER COMPUTATIONS

